K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

e lớp 6 a ơi

sory

3 tháng 8 2019

a) \(4x^2-y^2+4x+1\)

\(=\left(4x^2+4x+1\right)-y^2\)

\(=\left(2x+1\right)^2-y\)

\(=\left(2x+y+1\right)\left(2x-y-1\right)\)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

30 tháng 9 2015

 

a) x3+y3+z3-3xyz

=(x+y)3+z3-3x2y-3xy2-3xyz

=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)

=(x+y+z)(x2+y2+zx+zy+z2-zy)

 

b)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)

=b.(a2-c2)-ac.(a-c)-b2.(a-c)

=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)

=(a-c)[b.(a+c)-ac-b2]

=(a-c)(ab+bc-ac-b2)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

31 tháng 7 2018

b) (1 + 2x)(1- 2x) - x(x+2)(x-2)

= (1- 4x2) - x(x2 - 4)

= 1 - 4x2- x3- 4x

= (1 - x3) + (4x - 4x2)

= (1- x) (1 + x + x2) + 4x(1 -x)

= (1-x)(1+5x + x2)

15 tháng 10 2020

Bài 1:

a) \(3x^2-9x=3x\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)

Bài 2: 

a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)

\(=\left(67+33\right)^2=100^2=10000\)

Bài 3:

\(x\left(x-3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy \(x=-2\)hoặc \(x=3\)

15 tháng 10 2020

B1:

a) \(3x^2-9x=3x.\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)

B2:

a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)

B3:

\(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

25 tháng 9 2019

\(\left(x^2-x^2\right)^3\)x hayz

25 tháng 9 2019

Sửa đề\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)

Đặt \(\hept{\begin{cases}x^2+y^2=a\\z^2-x^2=b\\-y^2-z^2=c\end{cases}}\)

Nhận thấy \(a+b+c=x^2+y^2+z^2-x^2-y^2-z^2=0\)

Mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)( bạn tự chứng minh cái này nha )

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Thay \(\hept{\begin{cases}a=x^2+y^2\\b=z^2-x^2\\c=-y^2-z^2\end{cases}}\) vào (1) ta được :

\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b\right)^2-\left(3a\right)^2\)

\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

21 tháng 10 2018

a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số

b. (x-1)(4x+1)

c. -(3z^2-5y^2-6xy-3x^2)

d. x(y^2-2xy+x-9)

e. -(y-x)(y-x+2)

f. y^3+xy^2+3x^2y-y+x^2-x

HỌC TỐT.

22 tháng 10 2018

\(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(4x+1\right)\)

28 tháng 7 2019

\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)

\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)

\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)

\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)

\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)

\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)