Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)
b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X
XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)
TỪ ĐÓ TÍNH ĐƯỢC X=A
A B C E F D
các cạnh a,b,c của một tam giác tỉ lệ với 2; 3; 4. Tìm độ dài các cạnh cử tam giác biết tổng độ dài cạnh lớn nhất với cạnh nhỏ nhất hơn cạnh còn lại 20 cm
Mk giống bài abnj ko bạn
Bài làm mùa dịch mới ác chớ
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
Câu 1: (bạn tự vẽ hình nhé)
a) Xét \(\Delta\)BAH và \(\Delta\)CAH :
AHB^ = AHC^ = 90o
AB = AC
ABH^ = ACH^
=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn) (2)
=> BH = CH (2 cạnh tương ứng) (1)
Mà BH + CH = BC
<=> 2 * BH = 6
BH = 3 (cm)
ABH^ = ACH^
Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:
BH^2 + AH^2 = AB^2
AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
b) Từ (1) => AH là đường trung tuyến của \(\Delta\)BAC
=> A, G, H thẳng hàng.
c) Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^
Xét \(\Delta\)BAG và \(\Delta\)CAG:
AB = AC
BAG^ = CAG^
AG chung
=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)
=> ABG^ = ACG^ (2 góc tương ứng)
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
a,A+B+C=180 độ \(\Rightarrow C=30\)độ
\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)
b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK
c,BDC cân vì có DBC=DCB=30 độ
d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)
a)Xét \(\Delta\)BIM và \(\Delta\)CIN:
BMI=CNI=90
BI=CI
BIM=CIN(đối đỉnh)
=>\(\Delta\)BIM=\(\Delta\)CIN(cạnh huyền-góc nhọn)
=>MI=NI
b)Xét Tứ giác BMCN có 2 đường chéo BC, MN cắt nhau tại trung điểm I của mỗi đoạn
=>BMCN là hình bình hành=>BN//CM
c)Áp dụng Định lý Pythagoras cho tam giác vuông BMI, ta được:
BI2=BM2+MI2<=>MI2=(1/2BC)2-BM2=25-9=16cm=>MI=4cm
Suy ra: MN=2MI=2.4=8cm
Vậy:MN bằng 8cm