Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABD, tam giác HBD có
AB=BH ;góc ABD= góc HBD ( vì phân giác) ,BD chung
suy ra 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b, vì 2 tam giác bằng nhau ( câu a) suy ra góc BAD= góc BDH mà BAD= 90 độ suy ra BHD =90 độ hay DH vuông góc với BC
C, nếu góc C =60 độ suy ra góc B = 0 độ suy ra góc ABD= 15 độ suy ra góc ADB = 90 độ -15 độ = 75 độ ( phụ nhau)
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)
\(\implies\) 60 + BAH + 90 =180
\(\implies\) BAH = 30
b) Xét tam giác AHI và tam giác ADI có :
AH = AD (gt)
AI chung
HI=DI (gt)
\(\implies\) tam giác AHI = tam giác ADI (c-c-c)
\(\implies\) AIH = AID (hai góc tương ứng)
Mà AIH + AID = 180 (hai góc kề bù ) (2)
\(\implies\) AIH + AIH =180
\(\implies\) 2.AIH = 180
\(\implies\) AIH = 90(1)
Từ (1);(2) \(\implies\) AIH = AID = 90
\(\implies\) AI vuông góc với HD
c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)
Hay HAK = DAK
Xét tam giác AHK và tam giác ADK có :
AH = AD (gt)
AK chung
HAK = DAK (cmt)
\(\implies\) tam giác AHK = tam giác ADK (c-g-c)
+)Ta có:BAH + HAC = BAC
\(\implies\) BAH + HAC = 90
\(\implies\) 30 +HAC =90
\(\implies\) HAC = 60
Hay HAD =60
\(\implies\) HAK + DAK =60
Mà : HAK = DAK (cmt)
\(\implies\) HAK + HAK =60
\(\implies\) 2 HAK = 60
\(\implies\) HAK = 30
Xét tam giác vuông BHA và tam giác giác vuông KHA có:
HA chung
BAH = KAH =30 (cmt)
\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)
\(\implies\) BH = KH (hai cạnh tương ứng)
\(\implies\) H là trung điểm của BK
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
Tự vẽ hình :)
a) Ta có: \(HK\perp AC;AB\perp AC\Rightarrow AB//HK\left(đpcm\right)\)
b) Tam giác AIK có AH vừa là đường cao vừa là đường trung tuyến nên tam giác AKI cân tại A
Cách khác: Xét tam giác KHA và tam giác IHA ( c-g-c )
\(\Rightarrow AK=AI;\widehat{AKI}=\widehat{AIK}\)
Nên tam giác AKI cân tại A
c) Ta có tam giác AKI cân tại A ( cmt )
\(\Rightarrow\widehat{IKA}=\widehat{AIK}\)mà 2 góc này ở vị trí so le trong
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\left(đpcm\right)\)
d) Xét tam giác AIC và tam giác AKC là ra nha bạn :))))))))))))))
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
a,A+B+C=180 độ \(\Rightarrow C=30\)độ
\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)
b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK
c,BDC cân vì có DBC=DCB=30 độ
d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)
thế kb=kc cm kiểu j vaayj bn