Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2x - y )3 - 2( 4x3 + 1 ) + 6xy + y3
= 8x3 - 12x2y + 6xy2 - y3 - 8x3 - 2 + 6xy + y3
= 6xy2 + 6xy - 12x2y - 2
=> có phụ thuộc vào biến
1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16
= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16
= 8x3 + y3 - 8x3 - y3 - 16
= -16 ( đpcm )
2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3
= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3
= 24xy + 3 ( có phụ thuộc vào biến )
3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19
= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19
= -27 + 243 + 19 = 235 ( đpcm )
4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52
= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52
= -6x2 + 26x - 60 ( có phụ thuộc vào biến )
\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)
\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)
\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)
\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)
\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)
\(A=4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x+y+1\right)\left(2x-y-1\right)\)
\(=-197\)
Vậy....
\(\text{Vì }a^2-b^2=c^2-d^2=1\Leftrightarrow\hept{\begin{cases}a^2=b^2+1\left(1\right)\\d^2=c^2-1\left(2\right)\end{cases}}\)
\(\text{Ta có: }a^2d^2-a^2d^2=0\)
\(\Rightarrow a^2.\left(c^2-1\right)-d^2.\left(b^2+1\right)=0\)
\(\Rightarrow a^2c^2-b^2d^2-a^2-d^2=0\)
\(\Rightarrow a^2c^2-b^2d^2=a^2+d^2\)
Vậy \(a^2c^2-b^2d^2=a^2+d^2\)
a) 7x+7y=7(x+y)
b) 2x2y-6xy2=2xy(x-3y)
c)3x(x-1)+7x2(x-1)=x(x-1)(3+7x)
d)3x(x-4)+5x2(4-x)=(x-4)(3x-5x2)
=x(x-4)(3-5x)
e)6x4-9x3=3x3(2x-3)
f)5y8-15y6=5y6(y2-3)
C = y( x^4-y^4)-x^4y+y^5
=x^4y-y^5-x^4y+y^5
=0
Vậy...........................................
Bài giải ....
C = y . ( x2 - y2 ) ( x2 + y2) - y ( x4 - y4 )
C = y . \([(x^2)^2-\left(x^2\right)^2]\)- y . ( x4 - y4 )
C = y . ( x4 - y4 ) - y . ( x4 - y4 )
C = 0