Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)
:v .Sai mẹ r. *Chứng lại (mong rằng lầng này không còn lỗi sai).Sau đây là cách chứng minh của lớp 7
Do \(0\le x\le y\le z\le1\) nên \(xy< xz< yz\Leftrightarrow xy+1< xz+1< yz+1\)
Do đó; \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\) (1)
Ta cần chứng minh: \(\frac{x+y+z}{1+xy}\le\frac{1+xy+1}{1+xy}\Leftrightarrow x+y+z\le1+xy+1\)(đang tìm cách chứng minh.Sẽ đăng lên sau)
Suy ra: \(\frac{x+y+z}{xy+1}\le\frac{1+xy+1}{xy+1}=1+\frac{1}{xy+1}\le1+1=2\) ( do \(xy+1\ge1\Rightarrow\frac{1}{xy+1}\le1\))(2)
Từ (1) và (2) suy ra đpcm
mik đành thêm vào bài(gì mà đăng lên sau nhé)
Hiển nhiên \(0\le x\le y\le z\le1\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\y-1\ge0\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow xy+1-x-y\ge0\)
\(\Rightarrow xy+1\ge x+y\)
Do \(z\le1\)\(\Rightarrow\frac{x+y+z}{xy+1}\le\frac{xy+1+1}{xy+1}\le\frac{xy+2+xy}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}\le2\)
Nhờ bạn giải hộ mik giấu bằng xảy ra khi nào
Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)
Ta có: zx + zy = xy + xz => zy = xy => z = x (1)
Ta có: x - z = x - x = 0
a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)
hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)
hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)
V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)
b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
V...
\(a,5x^3-3x^2+x-x^3-4x^2-x\)
\(=4x^3-7x^2\)
\(b,y^2+2y-2y^2-3y+3\)
\(=-y^2-y+3\)
\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)
\(=\frac{1}{6}x^3-2x^2-5x+1\)
\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)
\(=xy^2+\frac{1}{6}y^2\)
\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)
\(=3xy-\frac{3}{2}z^2y+2zy^2\)
\(g,3^n+3^{n+2}\)
\(=3^n+3^n.3^2\)
\(=3^n\cdot10\)
\(h,1,5\cdot2^n-2^{n-1}\)
\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)
\(=2^n\cdot1\)
\(=2^n\)
\(i,2^n-2^n-2\)
\(=-2\)
\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)
\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)
\(=3^n\cdot\frac{1}{3}\)
\(=\frac{3^n}{3}\)
sẵn bán nick luôn :)
Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !
a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)
b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)
c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)
d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)
e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)
g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )
h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
i, \(2^n-2^n-2=-2\)
k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
Có j sai,mong mọi người góp ý,thông cảm ạ.
\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)
ta có :
\(\frac{x}{3}=\frac{y}{5}\)
\(\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)
\(\frac{x}{12}=3\Rightarrow x=36\)
\(\frac{y}{20}=2\Rightarrow y=40\)
\(\frac{z}{15}=2\Rightarrow z=30\)
bạn bảo bạn làm câu a r nên mik thôi còn câu b là:
ta có
x-1/2 = y-2/3 = z-3/4 = 2x-2/4 = z-3/a
áp dụng t/c của dãy tỉ số = nhau, ta có:
2x-2+3y-6-z+3 / 4+9-4 = 2x+3y-z-5 / 9 = 50-5 / 9 =45 / 5 = 5
=>
x-1 / 2 = 5=>x-1=10 => x=11
y-2 / 3 = 5 => y-2 = 15 => y = 17
z-3 / 4 = 5=> z-3 = 20 =>z =23
tick nha bạn
Sửa lại đề : \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow xy+yz+xz=0\)
\(\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\zx=-yz-xy\end{cases}\left(1\right)}\)
Thay (1) vào A, ta có :
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
\(=\frac{yz}{x^2+yz-xy-xz}+\frac{xz}{y^2+xz-yz-xy}+\frac{xy}{z^2+xy-yz-xz}\)
\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-z\right)\left(y-x\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)
\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}-\frac{xz}{\left(y-z\right)\left(x-y\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)
\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)