K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

19 tháng 4 2020

a) \(-\frac{x^{13}y^{12}}{75}\)

b) \(\frac{1024x^{70}y^{70}}{282475249}\)

c) \(-\frac{x^6y^9z^6}{2}\)

d) \(-\frac{u^3v^4}{2}\)

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

6 tháng 4 2018

Các bạn trả lời chi tiết hộ mình cái =))

7 tháng 4 2018

a/ Ta có\(\left(-\frac{1}{3}xy\right)\left(3x^2yz^2\right)\)\(-x^3y^2z^2\)có hệ số là -1

b/ Ta có \(-54y^2.bx\)\(-54bxy^2\)có hệ số là -54b (với b là hằng số)

c/ Ta có \(\left(-2x^2y\right)\left(-\frac{1}{2}\right)^2x\left(y^2z\right)^3\)\(x^3y\left(y^2z\right)^3\)\(\left(x^3y\right)\left(y^6z^3\right)\)\(x^3y^7z^3\)có hệ số là 1.

17 tháng 8 2019

nick bingbe của bn là j vậy

17 tháng 8 2019

Đề bài 1:

a)A=30x2yz-4xy2z-2008xyz     =>A có bậc 4

b)A=2xyz(15x-2y-1004z)            =>A=0 nếu 15x-2y=1004z

Đề bài 2:

Từ c(b+d)=2bd suy ra b+d=2bd/c

Viết a+c/b+d=2bc/2bd=c/d

Suy ra a/b=c/d=a+c/b+d

Biến đổi để có điều phải chứng minh.

1 tháng 12 2019

Vì x dương nên \(x^3+3x^2+5>x+3\)

hay \(5^y>5^z\Rightarrow5^y⋮5^z\)

\(\Rightarrow x^3+3x^2+5⋮x+3\)

\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)

Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)

\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)

\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)

và \(5^y=8+12+5=25\Rightarrow y=2\)

Vậy x = 2; y = 2; z = 1