Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có nghiệm \(\Leftrightarrow A=0\)
\(\Leftrightarrow2x^3+x^2+x-1=0\)
\(\Leftrightarrow2x^3-x^2+2x^2-x+2x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)
Mà : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy : để đa thức A có nghiệm thì \(x=\frac{1}{2}\)
a) I 5x+4I +7=26 b) 3 I 9-2xI - 17=16
I 5x+4 I = 26-7 3 I 9-2xI=16+17
I 5x+4 I =19 3 I 9-2xI=33
=> 5x+4=19 hoặc 5x+4=-19 I 9-2xI=33:3=11
5x = 19-4=15 hoặc 5x=-19-4=-23 => 9-2x=11 hoặc 9-2x=-11
-2x=11-9=2 hoặc -2x=-11+9=-2
x=2:(-2)=-1 hoặc x=-2:(-2)=1
a) \(\left|5x+4\right|+7=26\)
\(\Rightarrow\left|5x+4\right|=26-7\)
\(\Rightarrow\left|5x+4\right|=19\)
\(\Rightarrow\orbr{\begin{cases}5x+4=19\\5x+4=-19\end{cases}\Rightarrow\orbr{\begin{cases}5x=19-4\\5x=-19-4\end{cases}\Rightarrow}\orbr{\begin{cases}5x=15\\5x=-23\end{cases}\Rightarrow}\orbr{\begin{cases}x=15:5\\x=-23:5\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-4,6\end{cases}}}\)
Vậy \(x\in\left\{3;-4,6\right\}\)
b) \(3\left|9-2x\right|-17=16\)
\(\Rightarrow3\left|9-2x\right|=16+17\)
\(\Rightarrow3\left|9-2x\right|=23\)
\(\Rightarrow\left|9-2x\right|=23:3\)
\(\Rightarrow\left|9-2x\right|=\frac{23}{3}\)
\(\Rightarrow\orbr{\begin{cases}9-2x=\frac{23}{3}\\9-2x=-\frac{23}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{23}{3}+9\\2x=-\frac{23}{3}+9\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{23}{3}+\frac{27}{3}\\2x=-\frac{23}{3}+\frac{27}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{50}{3}\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{50}{3}:3\\x=4:2\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{50}{3}\times\frac{1}{3}\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{50}{9}\\x=2\end{cases}}}\)
Vậy \(x\in\left\{\frac{50}{9};4\right\}\)
Chúc bạn học tốt!
Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)
\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)
\(=\frac{50-2-6+3}{9}=5\)
Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)
\(\frac{3y-6}{9}=5\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z=23\)
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Vậy ...
a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
ADTCDTSBN
có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)
=> y/-3 = 5/2 => y = -15/2
x/5 = 5/2 => x = 25/2
KL:...
b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)
\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)
=> x/9 = 49/32 => x = ...
...
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=t\)
\(\Rightarrow\frac{3}{2}t=x;\frac{4}{3}t=y;\frac{5}{4}t=z\)
lại có \(x+y+z=49\)
nên \(\frac{3}{2}t+\frac{4}{3}t+\frac{5}{4}t=49\)
\(\Rightarrow\frac{49}{12}t=49\)
do đó \(t=12\)
suy ra \(x=18;y=16;z=15\)
Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)<=> \(\frac{6.2x}{6.3}=\frac{4.3x}{4.4}=\frac{3.4z}{3.5}\)
<=> \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy phân số bằng nhau ta có :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
Thay 12 vào từng biểu thức ta có :
\(\frac{12x}{18}=12\Rightarrow12x=12.18\Rightarrow x=\frac{12.18}{12}\Rightarrow x=18\)
\(\frac{12y}{16}=12\Rightarrow12y=12.16\Rightarrow y=\frac{12.16}{12}\Rightarrow y=16\)
\(\frac{12z}{15}=12\Rightarrow12z=12.15\Rightarrow z=\frac{12.15}{12}\Rightarrow z=15\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
\(\frac{4}{7}=\frac{12}{21}\)
\(\Rightarrow\) \(x+4=12\Rightarrow x=8\)
\(\Rightarrow y+7=21\Rightarrow y=14\)
x + y = 8 + 14 = 22
****
suy ra (x + 4)7 = (y+7)4 mà x + y =22
7x+28 = 4y +28 suy ra x=22 -y (2)
7x = 4y (1)
từ (1) và (2) suy ra :7(22 - y)=4y
154 - 7y =4y
154 = 11y
suy ra y = 154 /11=14
x = 22-14=8
Tìm x thuộc Z để A thuộc Z nha mn :)
Để \(A\inℤ\) thì \(2A\inℤ\)
Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)
Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng giá trị ta có:
Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)
Vậy \(x\in\left\{-4;-2;-1;1\right\}\)