\(\left|5x+4\right|+7=26\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

a) I 5x+4I +7=26                                                                                   b) 3 I 9-2xI - 17=16

    I 5x+4 I = 26-7                                                                                      3 I 9-2xI=16+17

    I 5x+4 I =19                                                                                           3 I 9-2xI=33

 => 5x+4=19 hoặc 5x+4=-19                                                                       I 9-2xI=33:3=11

     5x = 19-4=15 hoặc 5x=-19-4=-23                                                     => 9-2x=11 hoặc 9-2x=-11 

                                                                                                                   -2x=11-9=2 hoặc -2x=-11+9=-2

                                                                                                                    x=2:(-2)=-1 hoặc x=-2:(-2)=1

               

a) \(\left|5x+4\right|+7=26\)

\(\Rightarrow\left|5x+4\right|=26-7\)

\(\Rightarrow\left|5x+4\right|=19\)

\(\Rightarrow\orbr{\begin{cases}5x+4=19\\5x+4=-19\end{cases}\Rightarrow\orbr{\begin{cases}5x=19-4\\5x=-19-4\end{cases}\Rightarrow}\orbr{\begin{cases}5x=15\\5x=-23\end{cases}\Rightarrow}\orbr{\begin{cases}x=15:5\\x=-23:5\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-4,6\end{cases}}}\)

Vậy \(x\in\left\{3;-4,6\right\}\)

b) \(3\left|9-2x\right|-17=16\)

\(\Rightarrow3\left|9-2x\right|=16+17\)

\(\Rightarrow3\left|9-2x\right|=23\)

\(\Rightarrow\left|9-2x\right|=23:3\)

\(\Rightarrow\left|9-2x\right|=\frac{23}{3}\)

\(\Rightarrow\orbr{\begin{cases}9-2x=\frac{23}{3}\\9-2x=-\frac{23}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{23}{3}+9\\2x=-\frac{23}{3}+9\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{23}{3}+\frac{27}{3}\\2x=-\frac{23}{3}+\frac{27}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{50}{3}\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{50}{3}:3\\x=4:2\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{50}{3}\times\frac{1}{3}\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{50}{9}\\x=2\end{cases}}}\)

Vậy \(x\in\left\{\frac{50}{9};4\right\}\)

Chúc bạn học tốt!

16 tháng 2 2020

a) x ( x - 1 ) < 0 

\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)

=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)

=> 0 < x < 1

Vậy 0 < x < 1

b) Lát nghĩ ^^

16 tháng 2 2020

b) k chắc lắm ( tình bày theo ý hiểu thoii nha )

\(\frac{x^2\left(x-3\right)}{x-9}\le0\)

\(\Rightarrow\)      x2 ( x - 3 ) = 0 hoặc     \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)

Mà \(x^2\ge0\forall x\)

\(\Rightarrow\) x - 3 = 0 hoặc  \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)

\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\)  ( vô lí )    hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)

\(\Rightarrow3\le x< 9\)

Vậy \(3\le x< 9\)

@@ Học tốt 

Chiyuki Fujito

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101 

4 tháng 5 2019

đầu bài có đúng ko?

4 tháng 5 2019

\(P\left(-1\right)\cdot P\left(3\right)\)

\(=\left[a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c\right]\cdot\left(a\cdot3^2+b\cdot3+c\right)\)

\(=\left(-a-b+c\right)\left(9a+3b+c\right)\)(*)

Ta có : \(2a+b=0\Leftrightarrow2a=-b\)

Khi đó : \(3b=\left(-3\right)\left(-b\right)=-3\cdot2a=-6a\)

(*) \(\Leftrightarrow\left(-a+2a+c\right)\left(9a-6a+c\right)\)

\(=\left(a+c\right)\left(3a+c\right)\)

Đến đây thì chịu :) Em cho thiếu đề hay sao ý 

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

23 tháng 2 2019

a, P + 3x\(^{^2}\) - 4xy = 6y\(^{^2}\) - 9xy + x\(^2\)

=> P = 6y\(^2\)- 9xy + x\(^2\)+ 4xy - 3x\(^2\)= 6y\(^2\)- 5xy - 2x\(^2\)

=> P = 6y\(^2\) - 5xy - 2x\(^2\)

b, 

4y\(^2\) - 8xy - P = 5x\(^2\) - 12xy + 4y\(^2\)

=> P = 4y\(^2\) - 8xy - 5x\(^2\) + 12xy - 4y\(^2\) = 4xy - 5x\(^2\)

=> P = 4xy - 5x\(^2\)

c,

P - ( x\(^2\) - 2y\(^2\) + 3z\(^2\) ) + 3x\(^2\) - y\(^2\) + 2z\(^2\)= 2x\(^2\) - 3y\(^2\) -z\(^2\)

= P + 2x\(^2\) + y\(^2\) - z\(^2\) = 2x\(^2\) - 3y\(^2\) - z\(^2\)

=> P = 2x\(^2\) - 3y\(^2\) - z\(^2\) - 2x\(^2\) - y\(^2\) + z\(^2\)

=> P = -2y\(^2\)

3 tháng 12 2019

1) So sánh

Ta có : 224 = 23.8 = (23)8 = 88

           316 = 32.8 = (32)8 = 98

Vì 88 < 98

=>  224 < 316 

2) Tính

\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)

3) Tìm x nguyên

(x - 1)x + 2 = (x - 1)x + 6

=> (x - 1)x + 6 - (x - 1)x + 2 = 0

=> (x - 1)x + 2.[(x - 1)4 - 1] = 0

=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 0 => x = 1(tm)

Nếu x - 1 = - 1 => x = 0(tm)

Nếu x - 1 = 1 => x = 2(tm)

Vậy \(x\in\left\{1;0;2\right\}\)

3 tháng 12 2019

Bài 1:Ta có:

2^24=2^(6.4)=64^4

3^16=3^(4.4)=81^4

Bài 2.Ta có:

(0.25)^4=1/4.1/4.1/4.1/4=1/256

=>1/256.1024=4

Bài 3:

Ta có:(x-1)^(x+2)=(x-1)^(x+6)

Chia hai vế cho (x-1)^(x+2),do đó:

1=(x-1)^(x+4)

<=>x-1=1

<=>x=2

Hoặc chia hai vế cho (x-1)^(x+6)

(x-1)^(x-4)=1

<=>x-1=1

<=>x=2

a) \(\left(1-2x\right)^3=-8\)

\(\left(1-2x\right)^3=\left(-2\right)^3\)

\(1-2x=-2\)

\(2x=1-\left(-2\right)\)

\(2x=3\)

\(x=3:2\)

\(x=1,5\)

b) \(\left(2x-1\right)^3=-27\)

\(\left(2x-1\right)^3=\left(-3\right)^3\)

\(2x-1=-3\)

\(2x=-3+1\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

@Nghệ Mạt

#cua

14 tháng 11 2021

a) (1-2x)^3=-8

=>(1-2x)^3=(-2)^3

=>1-2x=-2

=>2x=-2-1

=>2x=-3

=>x=-3/2

vậy x=-3/2

b) (2x-1)^3=-27

=>(2x-1)^3=(-3)^3

=>2x-1=-3

=>2x=-3+1

=>2x=-2

=>x=-2/2

=>x=-1

vậy x=-1