Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) 23=2.2.2=823=2.2.2=8;
24=23.2=8.2=1624=23.2=8.2=16;
25=24.2=16.2=3225=24.2=16.2=32;
26=25.2=32.2=6426=25.2=32.2=64;
27=26.2=64.2=12827=26.2=64.2=128;
28=27.2=128.2=25628=27.2=128.2=256;
29=28.2=256.2=51229=28.2=256.2=512;
210=29.2=512.2=1024210=29.2=512.2=1024
b) 32=3.3=932=3.3=9;
33=32.3=9.3=2733=32.3=9.3=27;
34=33.3=27.3=8134=33.3=27.3=81;
35=34.3=81.3=24335=34.3=81.3=243.
c) 42=4.4=1642=4.4=16;
43=42.4=16.4=6443=42.4=16.4=64;
44=43.4=64.4=25644=43.4=64.4=256.
d) 52=5.5=2552=5.5=25;
53=52.5=25.5=12553=52.5=25.5=125;
54=53.5=125.5=62554=53.5=125.5=625.
e) 62=6.6=3662=6.6=36;
63=62.6=36.6=21663=62.6=36.6=216;
64=63.6=216.6=129664=63.6=216.6=1296.
\(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\)
\(=\frac{2}{5}\)
2/7+2/17+2/37/ 5/7+5/17+5/37
= 2(1/7+1/17+1/37)/ 5(1/7+1/17+1/37)
= 2/5
# HỌC TỐT #
tk nha
Ta có : n^2 + 2n + 7 chia hết cho n+2
=>n.n + 2n + 7 chia hết cho n+2
=>n(n+2) + 7 chia hết cho n+2
do n(n+2) chia hết cho n+2 nên 7chia hết cho n + 2
do n thuộc N nên n+2 thuộc N
=>n+2 thuộc U(7)
=>n+2 thuộc / \ bốn cái này là dấu ngoặc trong tập hợp nha
\ 1;7/
Mà n thuộc n nên n=5
vậy n = 5
Giả sử khi khai triển thập phân số \(2^{2019}\) có x chữ số và \(5^{2019}\)có y chữ số, ta có x,y nguyên dương và :
\(10^{x-1}< 2^{2019}< 10^x\\ 10^{y-1}< 5^{2019}< 10^y\)
Nhân vế với vế ta được:\(10^{x+y-2}< 10^{2019}< 10^{x+y}\)
Suy ra \(x+y-2< 2019\)
Suy ra x+y<2021
Học tốt
Mình vt mòn bàn phím đó, mong e gái song tử nói lời giữ lời
1) Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)
hay \(A⋮3\)(đpcm)
2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{1996}.13\)
\(=39+3^3.39+...+3^{1995}.39\)
Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)
hay \(B⋮39\)(đpcm)
a) 2+22+23+...+2100
=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)
=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)
=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)
=2.31+26.31+....+296.31
=31(2+26+....+296)
=> đpcm