Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-8(-7)+(-3).(-5)-(-4).9+2(-6)
=35+15-(-36)+(-12)
=74
15(-3)-(-7).(+2)+4.(-6)-7(-9)
=-45-(-14)+ (-24)-(-63)
8
n+15 chia het cho n-2
n-2+17 chia het cho n-2
suy ra 17 chia hết cho n-2
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
mấy cau sau tuong tu
Làm mẫu câu a bài 1. vì các câu còn lại tương tự
n+7 chia hết cho n-5
\(\Rightarrow\left(n+7\right)-\left(n-5\right)⋮n-5\)
\(\Rightarrow12⋮n-5\)
\(\Rightarrow n-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
ta có bảng :
n-5 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 6 | 4 | 7 | 3 | 8 | 2 | 9 | 1 | 11 | -1 | 17 | -7 |
vậy \(n\in\left\{6;4;7;3;8;2;9;1;11;-1;17;-7\right\}\)
2. làm mẫu câu a:
(2a+3)(b-3)=-12
=>(2a+3);(b-3)\(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
TH1:
2a+3=1 ;b-3=-12
2a=-2 =>b=-9
=>a=-1
sau đó em ghép siêu nhiều trường hợp còn lại .
có 12TH tất cả em nhé .
Câu 1: Giải
\(\frac{a}{b}< 1\Leftrightarrow a< b\)
\(\Leftrightarrow am< bm\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)
Câu 2: Giải
Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)
Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
a, \(2n+5⋮n-1\)
\(2\left(n-1\right)+7⋮n-1\)
\(7⋮n-1\)hay \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
b, Công thức tổng quát : \(A\left(x\right).B\left(x\right)=0\Rightarrow\orbr{\begin{cases}A\left(x\right)=0\\B\left(x\right)=0\end{cases}}\)
\(\left(2n+3\right)\left(n-4\right)=0\Leftrightarrow\orbr{\begin{cases}n=-\frac{3}{2}\\n=4\end{cases}}\)
c, \(\left|x-3\right|< 3\Leftrightarrow-3< x-3< 3\)
\(\Leftrightarrow-3+3< x< 3+3\Leftrightarrow0< x< 6\)
Vậy \(x\in\left\{1;2;3;4;5;\right\}\)
giải chi tiết ra giúp mk nhé các bn!thanks các bn nhiều ^^