Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử độ dài cạnh thứ ba là x ( cm ).
Theo hệ quả về bất đẳng thức tam giác ta có:
10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong các phương án chỉ có phương án D: 9cm thỏa mãn.
Chọn đáp án (D) 9cm.
Gọi độ dài cạnh thứ ba của tam giác là x cm (x > 0)
Áp dụng bất đẳng thức trong tam giác ta có: 10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong bốn đáp án A, B, C, D thì đáp án D thỏa mãn vì 8 < 9 < 12
Vậy độ dài cạnh thứ ba là 9 cm.
Chọn đáp án D
a) \(13^2=12^2+5^2\)
Vậy 5cm, 13cm, 12cm là cạnh của tam giác vuông
b) \(9^2\ne5^2+7^2\)
Vậy 9cm, 5cm, 7cm không là cạnh của tam giác vuông
c) \(10^2\ne5^2+7^2\)
Vậy 10cm, 5cm, 7cm không là cạnh của tam giác vuông
d) \(20^2=16^2+12^2\)
Vậy 20cm, 16cm, 12cm là cạnh của tam giác vuông
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
7-3 < x < 7 + 3 ⇒ 4 < x < 10. Chọn B
Gọi cạnh còn lại có độ dài là \(x\), theo bất đẳng thức tam giác ta có:
\(7-1< x< 7+1\Rightarrow6< x< 8\)
⇒ \(x=7\)
Chọn D
Gọi độ dài cạnh còn lại của tam giác là `x (x \ne 0,`\(\in N\)\(\text{*}\) `)`
Theo bất đẳng thức tam giác ta có:
`1+7 > x > 7-1`
`-> 8> x> 6`
`-> x= {7}`
Xét các đáp án `-> D (tm)`