Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trieu dang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Gọi các cạnh là a,b,c và các đường cao tương ứng là ha , hb và hc
Ta có: \(\frac{h_a}{4}=\frac{h_b}{3}=\frac{h_c}{5}\)
Đặt \(\frac{h_a}{4}=\frac{h_b}{3}=\frac{h_c}{5}=t\Rightarrow h_a=4t,h_b=3t,h_c=5t\)
Ta có: \(a.h_a=b.h_b=c.h_c\) (vì cùng bằng 2 lần diện tích tam giác)
\(\Rightarrow a.4t=b.3t=c.5t\)
\(\Rightarrow4a=3b=5c\Rightarrow\frac{4a}{60}=\frac{3b}{60}=\frac{5c}{60}\Rightarrow\frac{a}{15}=\frac{b}{20}=\frac{c}{12}\)
Vậy các cạnh tương ứng tỉ lệ với 15,20,12
Gọi độ dài 3 cạnh là a, b, c ( a, b, c thuộc R)
Và 3 đường cao tương ứng là ha, hb, hc
Ta có:
a:b:c=2:3:4 (1)
Vì diện tích của tam giác không đổi nên:
a*ha=b*hb=c*hc (2)
Từ 1 và 2 suy ra ha:hb:hc=4:3:2
Vậy 3 đường cao tương ứng tỉ lệ với 4,3,2
Gọi độ dài 3 cạnh của tam giác lần lượt là a, b, c ( \(a,b,c\inℕ^∗\))
chiều cao tương ứng với 3 cạnh của tam giác lần lượt là x, y, z ( \(x,y,z\inℕ^∗\))
Theo bài, ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)( \(k\inℕ^∗\))
\(\Rightarrow a=2k\); \(b=3k\)và \(c=4k\)
Ta có: \(S=\frac{a.x}{2}=\frac{b.y}{2}=\frac{c.z}{2}\)
\(\Rightarrow a.x=b.y=c.z\)\(\Rightarrow2k.x=3k.y=4k.z\)
\(\Rightarrow2x=3y=4z\)\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}=\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Vậy 3 chiều cao tương ứng lần lượt tỉ lệ với 6, 4, 3
Ủa sao vô đây nói tục v bạn :)) đã không trả lớp giúp mk rồi thì thôi xin lướt qua :))
ohh , sợ ghê ta