K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

Nó còn tuỳ thuộc vào từng lĩnh vực bạn ạ:
+ Trong số học, phần lý thuyết đồng dư thì " ≡ " có nghĩa là " đồng dư với "
VD: 6 chia 4 dư 2 ta nói 6 đồng dư với 2 theo mod 4 (mô-đun)
=> ta viết 6 ≡ 2 (mod 4)
5 chia 3 dư 2 thì ta viết:
5 ≡ 2 (mod 3)
123 chia 7 dư 4 ta viết:
123 ≡ 4 (mod 7)
234 chia hết cho 3 ta viết (số dư bằng 0)
234 ≡ 0 (mod 3) ....

+ Trong hình học thì kí hiệu " ≡ " lại có nghĩa là " trùng nhau"
VD: Giả thiết cho M là trung điểm AB, ta lấy 1 điểm M' thuộc AB mà ta chứng minh được M' là trung điểm AB
=> M trùng M' thì ta viết M ≡ M', lúc đó M và M' là một
(Có được điều này do 1 đoạn thẳng có duy nhất 1 trung điểm)
VD2: điểm G là trọng tâm tam giác ABC, nếu ta lấy thêm 1 điểm G' và chứng minh đựơc G' cũng là trọng tâm tam giác ABC => G trùng G'
=> ta viết G ≡ G'
(Do mỗi tam giác có duy nhất 1 trọng tâm)....

Trần Đăng Nhất Chúc bạn hok tốt

15 tháng 6 2018

dấu đó là dấu trùng

~~**chúc bn hok tốt**~~

là dấu trùng đấy bạn 

4 tháng 3 2020

mod là viết tắt của dạng toán modulo của điện toán

Trong điện toán, phép toán modulo là phép toán tìm số dư của phép chia 2 số (đôi khi được gọi là modulus).

Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, trong khi "9 mod 3" bằng 0 do 9 chia 3 có thương số là 3 và số dư 0; không còn gì trong phép trừ của 9 cho 3 nhân 3. (Lưu ý rằng thực hiện phép chia bằng máy tính cầm tay sẽ không hiển thị kết quả giống như phép toán này; thương số sẽ được biểu diễn dưới dạng phần thập phân.)

Mặc dù thường được thực hiện khi an đều là số nguyên, nhiều hệ tính toán cho phép sử dụng các kiểu khác của toán học bằng số. Giới hạn của một modulo nguyên của n là tù 0 đến n − 1. (a mod 1 luôn bằng 0; a mod 0 là không xác định, có thể trả về lỗi chia cho số 0 trong nhiều ngôn ngữ lập trình.) Xem số học mô-đun để tìm các quy ước cũ hơn và liên quan được áp dụng trong lý thuyết số.

Khi hoặc a hoặc n là số âm, định nghĩa cơ bản bị phá vỡ và các ngôn ngữ lập trình khác nhau trong việc định nghĩa các kết quả này.

4 tháng 3 2020

còn cái dấu kia thì mình chịu

5 tháng 11 2017

Dấu tương đương

5 tháng 11 2017

Dấu phải và trái

ọc thành đọc nhé mình viết vội

21 tháng 8 2017

Dấu tương đương bn

5 tháng 1 2018

Còn lại một dấu (-). Tự giải nhé!

18 tháng 11 2017

đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

=> x.y = 2k.5k = 10k2 = 90

k2 = 90:10

k2 = 9

k2 = 32 <=> k = 3

Thay k vào ta được \(\hept{\begin{cases}x=2k=2.3=6\\y=5k=5.3=15\end{cases}}\)

Vậy x=6 và y=15

18 tháng 11 2017

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

\(\Rightarrow x.y=2k.5k=10k^2\)

\(\Rightarrow k^2=90:10=9\)

\(\Rightarrow k=\pm3\)

Nếu k = 3 thì x = 6; y = 15

Nếu k = -3 thì x = -6; y = -15