Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = |1 - 3x| - |2/5 - 2x| với x > 1/3
Với x > 1/3, ta có:
D = 1 - 3x - 2/5 - 2x (với x > 1/3)
D = -5x - 2/5 + 1
D = -5x - 3/5
=> D = -5x + 3/5
Xét hiệu
a/b - (a+1)/(b+1)=a(b+1)/b(b+1) - (a+1)b/(b+1)b=(ab+a-ab-b)/b(b+1)=(a-b)/b(b+1)
Mà a>b>0(gt)=>(a-b)/b(b+1)>0=>a/b>(a+1)/(b+1)
bạn điền thêm vào như thế này:
...................
A= 1-1/2^99 <1
Hay A<1
Vậy.........
Có. Chúng ta lí luận:
Vì \(1-\frac{1}{2^{99}}>1\)
\(\Rightarrow A>1\)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
a)Để \(A\in Z\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
b)\(B=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
\(A=\frac{3}{n+1}\)
Để A nguyên thì n+1\(\in\)Ư(3)
Mà Ư(3)={1;-1;3;-3}
Ta có bảnh sau:
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy x={-4;-2;0;2}
\(B=\frac{3n+5}{n+4}=\frac{3\left(n+4\right)-7}{n+4}=3-\frac{7}{n+4}\)
Vậy để B nguyên thì n+4 thuộc Ư{7}
Mà:Ư(7)={1;-1;7;-7}
=>n+4={1;-1;7;-7}
Ta có bẳng sao:
n+4 | 1 | -1 | 7 | -7 |
n | -3 | -5 | 3 | -11 |
VaVaayk x={-11;-5;-3;3}