Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)
⇔\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)
⇔ \(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)
⇔ x+2009=0
⇔ x=-2009
vậy x=-2009 là nghiệm của pt
a) ( x2 + x )2 + 4( x2 + x ) = 12
<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0
<=> ( x2 + x + 2)2 - 16 = 0
<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0
<=> ( x2 + x + 6 )( x2 + x - 2) = 0
Do : x2 + x + 6
= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\) > 0 ∀x
=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1) + 2( x - 1) = 0
<=> ( x - 1)( x + 2 ) = 0
<=> x = 1 hoặc : x = - 2
KL.....
b) Kuroba kaito làm rùi nhé
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)
b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004
Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)
\(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010
Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(x^2+5y^2+2xy-2y+2005=x^2+y^2+4y^2+2xy-2y+\frac{1}{4}+\frac{8019}{4}\)
\(=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{8019}{4}\)
\(=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\)
Vì \(\left(x+y\right)^2\ge0\)
\(\left(2y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)
Vậy \(GTNN=\frac{8019}{4}\)tại \(x=-\frac{1}{4}\)và \(y=\frac{1}{4}\)
Mình nghĩ đề sai một chút ~ theo mình thì đa thức đầu tiên phải là "$x(x^3-y)$" mới đúng :v chứ y^3 thì số bự lắm ~~
----------------------------------------------------------------
Đặt $A=x(x^3-y)+x^2(y-x^2)-y(x^2-3x)$. Ta có :
$=>A=x^4-xy+x^2y-x^4-x^2y+3xy$
$=>A=2xy=1002,5$
Bạn sửa lại đề bài câu 2) nhé ^^
2) \(a+b+c+d=0\Leftrightarrow a+b=-c-d\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-\left[c^3+d^3+3cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)
Có thể tính nhanh ...
Ta có :
=> x^8 - 2015 .x^7+...+2015.x+2015
= x^8 - 2014.x^7 - x^7 +... + 2014.x + x + 2015 (( Đây là làm tắt một bước tách 2015 = 2014 + 1 ))
= 2014^8 - 2014^8 - 2014^7 + 2014^2 + 2015 (( Tắt bước thay số và nhân vào ))
= 2015 (( Các số sẽ khử nhau ))
******** Hơi lười bài nhiều chỗ tắt ~ thông cảm ***********