K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

Bài 1:

\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^2\left(x^2-1\right)\)

\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)

\(=x^6+27-27-27x^2-9x^4-x^6\)

\(=-9x^2\left(3-x^2\right)\)

18 tháng 7 2017

Bài 5:

\(A=x^2-2x+1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)

Vậy Min A = -2

Để A = -2 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x^2+4x+5\)

\(=\left(4x^2+4x+1\right)+4\)

\(=\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)

Vậy Min B = 4

Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

c, \(C=2x-x^2-4\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3

để C = -3 thì \(x-1=0\Rightarrow x=1\)

19 tháng 9 2017

2.a là x=0 , x=-1, x=-2
2.b là x=2/3 , x=-5

20 tháng 9 2017

Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha

31 tháng 7 2019

\(A=\left(x+1\right)^2+\left(x+2\right)^2=\left(x+1\right)^2+\left(-2-x\right)^2\ge\frac{1}{2}\left(x+1-2-x\right)^2=\frac{1}{2}.1^2=\frac{1}{2}\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)

\(B=-2x^2-4\le0-4=-4\Rightarrow B_{max}=-4\Leftrightarrow x=0\)

\(C=-5x^2+10x-7=-5x^2+10x-5-2=-5\left(x-1\right)^2-2\le0-2=-2\Rightarrow C_{min}=-2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

27 tháng 9 2017

\(a,2x^2-2xt-5x+5y\)

\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)

\(=x\left(2x-5\right)-y\left(2x-5\right)\)

\(=\left(2x-5\right)\left(x-y\right)\)

\(b,8x^2+4xy-2ax-ay\)

\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(4x-a\right)\left(2x+y\right)\)

\(c,x^3-4x^2+4x\)

\(=x^3-2x^2-2x^2+4x\)

\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)

\(=x\left(x-2\right)^2\)

\(d,2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

\(e,x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

28 tháng 1 2020

Thank you.

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1