K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

a)   \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)

b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)

18 tháng 8 2018

a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

                                  \(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004

Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)

                                                          \(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010

Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

16 tháng 8 2019

Mình cần gấp mn ơi ! Cảm ơn trc ạ

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

18 tháng 9 2017

a.20183

18 tháng 9 2017

a) 2018\(^3-1\)

\(\Rightarrow\left(2018-1\right)\left(2018^2+2018+1\right)\)

\(\Rightarrow2017\left(2018^2+2018+1\right)⋮2017\)

b) 2005\(^3+5^3\)

\(\Rightarrow\left(2005+5\right)\left(2005^2-10025+25\right)\)

\(\Rightarrow2010\left(2005^2-10025+25\right)⋮2010\)

19 tháng 9 2020

a) B = x2 + 4y2 - 5x + 10y - 4xy + 17 

= ( x2 - 4xy + 4y2 ) - ( 5x - 10y ) + 17

= ( x - 2y )2 - 5( x - 2y ) + 17

= 52 - 5.5 + 17

= 17

b) C = 2( a3 + b3 ) - 3( a2 + b2 )

= 2( a + b )( a2 - ab + b2 ) - 3( a2 + b2 )

= 2( a2 - ab + b2 ) - 3a2 - 3b2 ( gt a + b = 1 )

= 2a2 - 2ab + 2b2 - 3a2 - 3b2

= -a2 - 2ab - b2

= -( a2 + 2ab + b2 )

= -( a + b )2

= -1

c) a + b + c + d = 0

<=> a + b = -( c + d )

<=> ( a + b )3 = -( c + d )3

<=> a3 + 3a2b + 3ab2 + b3 = -( c3 + 3c2d + 3cd2 + d3 )

<=> a3 + 3a2b + 3ab2 + b3 = -c3 - 3c2d - 3cd2 - d3

<=> a3 + b3 + c3 + d3 = -3c2d - 3cd2 - 3a2b - 3ab2

<=> a3 + b3 + c3 + d3 = -3cd( c + d ) - 3ab( a + b )

<=> a3 + b3 + c3 + d3 = 3ab( c + d ) - 3cd( c + d ) < Do ( a + b ) = -( c + d ) >

<=> a3 + b3 + c3 + d3 = 3( ab - cd )( c + d )

<=> a3 + b3 + c3 + d3 - 3( ab - cd )( c + d ) = 0

19 tháng 9 2020

Cảm ơn bạn TRẦN NHẬT QUỲNH nha'

25 tháng 12 2016

\(2P=2x^2+2y^2-2xy-2x+2y+2\)

= (x2 - 2xy + y2) + \(\frac{4}{3}\)(y - x) + \(\frac{4}{9}\)+ (x2 - \(\frac{2}{3}\)x + \(\frac{1}{9}\)) + (y2 + \(\frac{2}{3}\)y + \(\frac{1}{9}\)) + \(\frac{4}{3}\)

= (y - x + \(\frac{2}{3}\))2 + (x - \(\frac{1}{3}\))2 + (y + \(\frac{1}{3}\))2 + \(\frac{4}{3}\)\(\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

Vậy GTNN là \(\frac{2}{3}\)đạt được khi x = \(\frac{1}{3}\); y = - \(\frac{1}{3}\)  

25 tháng 12 2016

Nhiều quá không muốn giải. Bạn chọn đi. Mình giúp bạn giải 1 câu (bạn thích câu nào mình giải câu đó cho ) :D