\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)

=> đpcm

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

16 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\)

Ta có: \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (1)

\(\frac{a_2}{a_3}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2)

.............

\(\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2008)

Nhân (1),(2),...,(2008) vế với vế ta có:

\(\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\cdot\cdot\cdot\frac{a_{2008}}{a_{2009}}=\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\) (đpcm)

30 tháng 10 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=....=\left(\frac{a_n}{a_{n+1}}\right)^n=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)(1)

Ta có: \(\left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=\frac{a_1}{a_{n+1}}\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)(đpcm)

4 tháng 4 2020

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau có:}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=...=\left(\frac{a_n}{a_{n+1}}\right)^n\)\(=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)

\( \left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}\cdot\frac{a_1}{a_2}\cdot...\cdot\frac{a_1}{a_2}\)\(=\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot...\cdot\frac{a_n}{a_{n+1}}\)\(=\frac{a_1}{a_{n-1}}\)

\(\Rightarrow\)\(\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)\(=\frac{a_1}{a_{n-1}}\)

11 tháng 3 2016

đây là số mũ hả bạn

11 tháng 3 2016

ko pạn à, số ở dưới