Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2015}=\left(\frac{a_2}{a_3}\right)^{2015}=...=\left(\frac{a_{2015}}{a_{2016}}\right)^{2015}=\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1.a_2...a_{2015}}{a_2.a_3...a_{2016}}=\frac{a_1}{a_{2016}}\)
=> \(\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\)
Ta có: \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (1)
\(\frac{a_2}{a_3}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2)
.............
\(\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2008)
Nhân (1),(2),...,(2008) vế với vế ta có:
\(\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\cdot\cdot\cdot\frac{a_{2008}}{a_{2009}}=\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\) (đpcm)
Ta có : \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\)
Đặt \(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}=b\)thì \(\frac{a_1}{a_2}=b\left(1\right);\frac{a_2}{a_3}=b\left(2\right);\frac{a_3}{a_4}=b\left(3\right);...;\frac{a_{2008}}{a_{2009}}=b\left(2008\right)\)
Nhân (1),(2),(3),...,(2008) vế theo vế,ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2008}}{a_{2009}}=b^{2008}\)hay \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\)(đpcm)
đây là số mũ hả bạn
ko pạn à, số ở dưới