K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)

=a(a+1)(a+2)

Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)

mà (2;3)=1

=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)

b)Ta có:

a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a

cái này có phải đề sai k vậy bạn

21 tháng 6 2017

đúng mà bn

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

6 tháng 9 2016

Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên

Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ

6 tháng 9 2016

Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

6 tháng 11 2015

dat cau hoi muon ko ai tra loi la phai