K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\left(đpcm\right)\)

13 tháng 12 2015

đúng là hậu đậu.chép sai đề rồi kìa!

19 tháng 5 2017

1/2! + 2/3! + 3/4! + ... + 99/100!

<1/1.2 + 1/2.3 + 1/3.4 + ... + 99/99.100 = 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                              = 1 - 1/100 <1

=> 1/2! + 2/3! + 3/4! + ... + 99/100! < 1

3 tháng 3 2020

Ta có:\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\left(đpcm\right)\)

A=1/3+1/32+1/33+...+1/399

3A=1+1/3+1/32+1/33+...+1/398

3A-A=1+1/3+1/32+....+1/399-1/3-1/32-...-1\398

2A=1-1/398<1

A<1/2(DPCM)

18 tháng 4 2016

3A=1+1/3+1/3^2+...+1/3^98

3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+...+1/3^99)

2A=1-1/3^99<1

Vậy A<1/2 =>ĐPCM

10 tháng 9 2016

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+..+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\left(đpcm\right)\)

13 tháng 12 2015

bỏ dấu chấm than đi

lm xong văn chưa?