K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.

Thật vậy, nếu \(d\inƯC\left(2n+1,2n+3\right)\) suy ra:

\(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\) => \(\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮d\)

=> \(2⋮d\) => d = 1 hoặc d =2

Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì \(2n+1⋮2\) (vô lý vì 2n +1 là số lẻ).

=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

5 tháng 12 2017

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu d ∈ ƯC 2n + 1,2n + 3 suy ra:
2n + 1⋮d
2n + 3⋮d
=> 2n + 3 − 2n + 1 ⋮d
=> 2⋮d => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì 2n + 1⋮2 (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

chúc bn hok tốt @_@

26 tháng 11 2017

a là sao

17 tháng 4 2017

\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)

gọi d là ước lớn nhất của A và B

ta có

\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)

Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm 

5 tháng 5 2017

mình k hiểu cho lắm dong thứ 2

1 tháng 12 2019

Gọi d là ƯCLN của 2n+1 và 3n+1

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}\Rightarrow}\left(6n+3\right)-\left(6n+2\right)⋮d}\Rightarrow1⋮d\)

=> Đpcm

1 tháng 12 2019

cảm ơn nhé

28 tháng 8 2016

vi 2 so do la 2 so nguyen to

29 tháng 10 2017

 Tìm n ∈  N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và  2n + 3 4n + 3  tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4)  ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)  2n + 4 = 2.(n +1) + 2  => d = ( n +1; 2)  Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1  => n + 1 không chia hết cho 2  => n+ 1 = 2k + 1 , k thuộc N  => n = 2k  Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau

29 tháng 10 2017

b, giả sử d = ( 7n +13 ; 2n + 4) 
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 
2n + 4 = 2.(n +1) + 2 
=> d = ( n +1; 2) 
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 
=> n + 1 không chia hết cho 2 
=> n+ 1 = 2k + 1 , k thuộc N 
=> n = 2k 
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau