Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3^n\left(2^{2n}\cdot3^2+3^2+1\right)=3^n\left(2^{2n}\cdot9+10\right)\)
Nếu n=1 thì biểu thức này không chia hết cho 11 nha bạn
=>Đề sai
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n−1)2+1]=y2
Muốn pt trên đúng thi (�−1)2+1(n−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
Câu hỏi của gửi gió lời yêu em - Toán lớp 6 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
Sử dụng đồng dư. Em mới hc lớp 7 cũng như mới hc đồng dư nên không biết đúng không
Ta có
\(6^2\equiv14\)( mod 11) \(\Leftrightarrow6^{2n}\equiv14^n\)(mod 11)
\(9\equiv20\)( mod 11) \(\Leftrightarrow9\cdot3^n\equiv20\cdot3^n\)(mod 11)
\(3\equiv14\)(mod 11) \(\Leftrightarrow3^n\equiv14^n\)(mod 11)
Ta có
\(6^{2n}+3^{n+2}+3^n\equiv14^n+20\cdot3^n+14^n\)(mod 11)
Hơn nữa
\(3^n\equiv14^n\)( mod 11)
\(6^{2n}\equiv14^n\)( mod 11)
Do đó:
\(3^n\equiv6^{2n}\)(mod 11)
Mà \(9\equiv20\)(mod 11)
Ta có: đồng dư thức
\(6^{2n}+3^{n+2}+3^n\equiv3^n+9\cdot3^n+3^n\)( mod 11)
Suy ra \(6^{2n}+3^{n+2}+3^2\equiv3^n\left(1+9+1\right)\equiv3^n\cdot11\)( mod 11)
Vậy \(6^{2n}+3^{n+2}+3^n⋮11\)