Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
=> A3 = 40 + 6A
<=> A = 4
a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
\(x=\sqrt[3]{30+14\sqrt{2}}-\sqrt[3]{20+14\sqrt{2}}\)
\(=\sqrt[3]{\left[2^3+3.2^2.\sqrt{2}+3.2+\sqrt{2^2}+\left(\sqrt{2}\right)^3\right]}+\sqrt[3]{\left[2^3-3.2.\sqrt{2}+3.2.\sqrt{2^2}-\left(\sqrt{2}\right)^3\right]}\)
\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}\)
\(=4\)
Vậy x = 4.
Ta có
\(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
\(=\sqrt[3]{\left(\sqrt{2}\right)^3+3\cdot2\cdot2+3\cdot\sqrt{2}\cdot2^2+2^3}-\sqrt[3]{\left(\sqrt{2}\right)^3-3\cdot2\cdot2-3\cdot\sqrt{2}\cdot2^2-2^3}\)
\(=\sqrt[3]{\left(\sqrt{2}+2\right)^3}-\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)
\(=\sqrt{2}+2-\sqrt{2}+2=4\)