K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

cau a,b,c thay no co chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)

dang nay co 2 cach

C1: nhanh kho nhin de sai

VD: cau B

\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)

B^3=40+3(2)(B)

B^3=40+6B

B=4

C2: hoi dai nhung de nhin

dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)

de thay B=a+b

            ab=2

            a^3+b^3=40

suy ra B^3=a^3+b^3+3ab(a+b)

B^3=40+6B

B=4

giai tuong tu

con co cach nay nhung it su dung vi kho tim

C3: dua ve tong lap phuong

VD:cau B

 \(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)

\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)

de thay

B=4

cau d)

dung CT nay

\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)

ap dung vao bai

\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)

nhanh vao

\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

27 tháng 10 2019

a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)

=>  \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

\(=20+14\sqrt{2}+20-14\sqrt{2}\)

\(+3\left(\text{​​}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)

\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)

\(\Rightarrow A^3=40+3.A.2\)

=> \(A^3-6A-40=0\)

<=> \(A^3-16A+10A-40=0\)

<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)

<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)

<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))

Vậy A = 4.

b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)

=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)

\(=26+15\sqrt{3}-26+15\sqrt{3}\)

\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)

\(=30\sqrt{3}-3B.1\)

=> \(B^3+3B-30\sqrt{3}=0\)

<=> \(B^3-12B+15B-30\sqrt{3}=0\)

<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)

<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)

<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))

<=> \(B=2\sqrt{3}\)

19 tháng 6 2018

e , \(\sqrt{11^2-\left(6\sqrt{2}\right)^2}\)

27 tháng 10 2019

g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

13 tháng 7 2016

@.@ Trời ơi, nhiều thế ^^

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)

\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)

b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)

\(=2+\sqrt{2}+2-\sqrt{2}=4\)

d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)

\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)