K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

16 tháng 7 2016

Nếu n chẵn

=> n2-1 lẻ

=> không chia hết cho 24 (1)

Nếu n chia hết cho 3

=> n2 chia hết cho 3

=> n2-1 không chia hết cho 3

=> n2-1 không chia hết cho 24 (2)

Từ (1) và (2) 

=> đpcm

16 tháng 7 2016

thanks bạn nhìu 

 

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

5 tháng 7 2016

Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))

\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)

Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.

Do đó : 4k(k+1) chia hết cho 2.4=8

29 tháng 6 2019

1, Đúng

2, Sai ( VD \(\sqrt{3^2}⋮3\) nhưng \(\sqrt{3}⋮̸3\))

-----------HẾT----------------

29 tháng 6 2019

1/ Giả sử n là số chẵn : 2k

\(\Rightarrow n^2=4k^2\)

Mà 4k2 chẵn (trái vs gt)

=> đpcm

2/Giả sử \(n⋮̸\) 3

\(\Rightarrow n.n⋮̸\) 3

\(\Leftrightarrow n^2⋮̸\) 3(trái gt)

=> đpcm

3/ Giả sử \(a+b< 2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b< 0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< 0\) (vô lí)

=> đpcm

4/ Giả sử \(x\ne0\Rightarrow x^2\ne0;y\ne0\Rightarrow y^2\ne0\)

\(\Rightarrow x^2+y^2\ne0\) (trái gt)

=> đpcm

Câu 5 bn xem lại đề bài nhé vì nếu x=y=-2 thì x+y+xy= 0\(\ne-1\)

6/ Gọi 2 số thực là a và b

Giả sử \(a=1;b=1\Rightarrow a+b=2\) (trái gt)

=> đpcm

ko thì bn giả sử \(a< 1;b< 1\Rightarrow a+b< 2\) (trái gt) cũng đc

P/s: mk ms hok dạng này nên có sai sót j xin rộng lượng bỏ qua. Đa tạ!

n chia hết cho 3 => n =3k (k ∈Z)
n(n+1) =3k (3k+1) 
nếu k le ; k =2t+1 (t ∈Z)
3k (3k+1) =3(2t+1 )[ (3.(2t+1) +1 ] =3(2t+1 )[6t+3 +1) =3.(2t+1 )[6t+4)
=3(2t+1 ).2.(3t+2) =6(2t+1 ) (3t+2) chia hết cho 6
nếu k chẵn ; k =2t (t ∈Z)
3k (3k+1) =6t (3k+1 ] = chia hết cho 6
=> n(n+1) chia hết cho 6 nếu n chia hết cho 3=> dpcm

25 tháng 7 2022

ếu nn chia hết cho 33 thì n = 3kn=3k với k \in \mathbb{N}kN.

loading... Xét k=2mk=2m thì n = 6mn=6m suy ra n(n+1) = 6m(6m+1)n(n+1)=6m(6m+1) chia hết cho 66.

loading... Xét k = 2m+1k=2m+1 thì n = 3(2m+1) = 6m+3n=3(2m+1)=6m+3.

Suy ra n(n+1) = (6m+3)(6m+4) = 3.(2m+1).2(3m+2) = 6.(2m+1).(3m+2)n(n+1)=(6m+3)(6m+4)=3.(2m+1).2(3m+2)=6.(2m+1).(3m+2) chia hết cho 66.

28 tháng 8 2019

ta xét hai khả năng

1. nếun3n⋮3 thì (n3+2n)3(n3+2n)⋮3

2.nếu n không chia hết cho 3 thì n có dạng n=3k+1n=3k+1 hoặc n=3k+2

với k thuộc N

Với n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)

=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)3=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3

Với n=3k+2(n3+2n)=(3k+2)3+2(3k+2)n=3k+2⋮(n3+2n)=(3k+2)3+2(3k+2)

=27k3+54k2+36k+8+6k+4=3(9k3+18k2+14k+4)3