K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

ta xét hai khả năng

1. nếun3n⋮3 thì (n3+2n)3(n3+2n)⋮3

2.nếu n không chia hết cho 3 thì n có dạng n=3k+1n=3k+1 hoặc n=3k+2

với k thuộc N

Với n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)

=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)3=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3

Với n=3k+2(n3+2n)=(3k+2)3+2(3k+2)n=3k+2⋮(n3+2n)=(3k+2)3+2(3k+2)

=27k3+54k2+36k+8+6k+4=3(9k3+18k2+14k+4)3

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.

b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi  Q, ta được mệnh đề R có dạng: “Nếu P thì Q”

3 tháng 5 2019

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

16 tháng 7 2016

Nếu n chẵn

=> n2-1 lẻ

=> không chia hết cho 24 (1)

Nếu n chia hết cho 3

=> n2 chia hết cho 3

=> n2-1 không chia hết cho 3

=> n2-1 không chia hết cho 24 (2)

Từ (1) và (2) 

=> đpcm

16 tháng 7 2016

thanks bạn nhìu 

 

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

27 tháng 9 2020

vì n \(\in\) N nên n2 là số tự nhiên

mà n2 \(⋮\) 3 nên n2 có dạng 3k với k là số tn

khi đó 3k là số chính phương mà 3 là số nguyên tố

\(\Rightarrow\) k có dạng 3a với a là số chính phương

khi đó n bằng 3\(\sqrt{a}\) với a là số chính phương

\(\Rightarrow\)n \(⋮\) 3