Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7
\(A=n^7-14n^5+49n^3-36n=\left(n^3+1\right)\left(n^3-1\right).n+7\left(-2n^5+7n^3-5n\right)\)
Xét các số dư của n khi chia cho 7.
Xét mod 7:
+n ≡ 0 => n⋮ 7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 1; 2; 4; => n3 ≡ 1 => n3-1 ≡ 0 => n3-1⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 3; 5; 6 => n3 ≡ 6 => n3 + 1 ≡ 0 => n3 + 1 ⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
Vậy A luôn chia hết cho 7.
đặt A=\(n^3\)(n^2-7)^2-36n=n(n^2(n^2-7)^2-6^2)
=n((n^3-7n)-6^2)
=n(n^3-7n-6)(n^3-7n+6)
=n(n+1)(n+2)(n-3)(n+3)(n-2)(n-1)
do A là tích của 7 số tự nhiên liên tiếp =>tồn tại ít nhất 1 số chia hết cho 7
=> A chia hết cho 7 (ĐPCM)
Đặt A=B
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>B chia hết cho 105
Có 5040=16.9.5.7
A= n3(n2-7)2-36n
= n.[ n2(n2-7)2-36]
= n.[(n3-7n)2-36]
= n.(n3-7n-6)(n3-7n+6)
Có :
\(\cdot\) n3-7n-6
= n3-9n+2n-6
= n(n2-9)+2(n-3)
= n(n+3)(n-3)+2(n-3)
= (n-3)(n+1)(n+2)
\(\cdot\) n3-7n+6
= n3-9n+2n+6
= n(n-3)(n+3)+2(n+3)
= (n+3)(n-1)(n-2)
\(\Rightarrow A=\left(n-3\right)\left(n-1\right)\left(n-2\right)n\left(n+1\right)\left(n+3\right)\left(n+2\right)\)
Đây là tích 7 số nguyên liên tiếp , trong 7 số nguyên liên tiếp đó có
\(-\) Tồn tại 1 bội số của 5 \(\Rightarrow A⋮5\)
\(-\) Tồn tại 1 bội số của 7 \(\Rightarrow A⋮7\)
\(-\) Tồn tại 2 bội số của 3 \(\Rightarrow A⋮9\)
\(-\) Tồn tại 3 bội số của 2 , trong đó có 1 bội số của 4 \(\Rightarrow A⋮16\)
\(\Rightarrow A⋮9.16.5.7\)
\(\Rightarrow A⋮5040\left(đpcm\right)\)
Ta có: \(n^3\left(n^2-7\right)^2-36n\)
\(=n^7-14n^5+49n^3-36n\)
\(=n\left(n^6-14n^4+49n^2-36\right)\)
\(=n\left(n^2-9\right)\left(n^2-4\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Tích 7 số liên tiếp chia hết 105 (đúng)
Vì đây là 7 số liên tiếp nên A chia hết cho 7!
=>A chia hết cho 105