Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
Ta có:
\(8^9+7^9+6^9+5^9+...+2^9+1^9\)
\(=\left(8^3+7^3+6^3+5^3+...+2^3+1^3\right)^2\)
\(=\left(\left(8+7+6+5+...+2+1\right)^2\right)^2\)
\(=\left(8+7+6+5+...+2+1\right)^4\)
\(=36^4\)
\(=9^4.4^4\)
\(9^{10}=9^4.9^6\)
Vì \(9^4.9^6>9^4.4^4\)
\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+...+2^9+1^9\)
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
1, Tìm x biết: a, 6x 1-6x=1080
b, 6x-1 6x=42 2, So sánh: E=7.(8 82 83 ....... 8100) 8 và G=8101 3, Chứng tỏ: a, 4343-1717 chia hết cho 10 b, 3636-910 chia hết cho 45
c, 2 10 2 11 2 12 7 210 211 2127 có giá trị là số tự nhiên
d, 8 10 − 8 9 − 8 8 55 810−89−8855 có giá trị là số tự nhiên
hi
Bài 1:
a: \(\Leftrightarrow6^x\left(6-1\right)=1080\)
=>6x=216
=>x=3
b: \(\Leftrightarrow6^x\left(\dfrac{1}{6}+1\right)=42\)
=>6x=36
=>x=2
Câu 3:
c: \(=\dfrac{2^{10}\left(1+2+2^2\right)}{7}=2^{10}\) là số tự nhiên
d: \(=\dfrac{8^8\left(8^2-8-1\right)}{55}=8^8\) là số tự nhiên
A = \(\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)
A = \(\left(-\frac{1}{4}\right)+\frac{5}{6}-\frac{7}{12}\)
A = \(\frac{7}{12}-\frac{7}{12}\)
A = \(0\).
Mình làm câu A thôi nhé.
Chúc bạn học tốt!
a: \(\Leftrightarrow\left|x-3\right|=12-5x-8=-5x+4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(-5x+4\right)^2=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(5x-4-x+3\right)\left(5x-4+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(4x-1\right)\left(6x-7\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{4}\)
b: \(\left(\sqrt{x}+3\right)^{10}=1024\cdot125^2\cdot25^2\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^{10}=2^{10}\cdot5^6\cdot5^4=10^{10}\)
\(\Leftrightarrow\sqrt{x}+3=10\)
hay x=49
c: \(\dfrac{3-0.2x}{5}=\dfrac{7}{15}+1.4x\)
\(\Leftrightarrow\dfrac{9-0.6x}{15}=\dfrac{7}{15}+\dfrac{21x}{15}\)
=>21x+7=9-0,6x
=>21,6x=-2
hay x=-5/54
d: \(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{5^9\cdot7^9\left(4\cdot7-5^2\right)}{5^9\cdot7^9\cdot4}\)
\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{28-25}{4}=\dfrac{3}{4}\)
=>3x=-1
hay x=-1/3