K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2

TH1: p = 3k+1

\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)

\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)

-> a chia hết cho 3

TH2: p = 3k+2

\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)

\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)

-> a chia hết cho 3

Vậy a là hợp số

14 tháng 10 2019

bn oi nhầm rồi

\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)

28 tháng 2 2020

Cần chú ý: Số chính phương chia cho 3 luôn dư 0 hoặc 1

Ta có: \(2020p^2=505\left(2p\right)^2\)

\(\left(2p\right)^2\) là số chính phương nên \(\left(2p\right)^2\) chia 3 dư 0 hoặc 1

Mà p là số nguyên tố khác 3 nên p không chia hết cho 3

=> 2p không chia hết cho 3

=> \(\left(2p\right)^2\) không chia hết cho 3

Do đó: \(\left(2p\right)^2\)chia 3 dư 1

Đặt \(\left(2p\right)^2=3k+1\left(k\in Z\right)\) \(\Rightarrow505.\left(2p\right)^2=505\left(3k+1\right)=1515k+505\)

\(\Rightarrow3n+2+2020p^2=3n+2+1515k+505=3n+1515k+507\)

Vì 3n, 1515k, 507 đều chia hết cho 3 nên 3n + 1515k + 507 chia hết cho 3

=> \(3n+2+2020p^2\)chia hết cho 3

=> Đpcm

DD
17 tháng 5 2021

\(A=19.2^{3n}+17=19.8^n+17\)

Với \(n=2k\)

\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)

mà \(A>3\)nên \(A\)là hợp số. 

Với \(n=4k+1\)

\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)

mà \(A>13\)nên \(A\)là hợp số. 

Với \(n=4k+3\)

\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)

mà \(A>5\)nên \(A\)là hợp số. 

27 tháng 10 2016

Vì \(b\in P;b\ne3\)

\(\Rightarrow\orbr{\begin{cases}b\text{≡}2\left(mod3\right)\\b\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}b^2\text{≡}4\text{≡}1\left(mod3\right)\\b^2\text{≡}1^2\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow b^2\text{≡}1\left(mod3\right)\)

\(\Rightarrow1993b^2\text{≡}1993\text{≡}1\left(mod3\right)\)

Lại có \(3x\text{≡}0\left(mod3\right)\)

\(2\text{≡}2\left(mod3\right)\)

\(\Rightarrow A=3x+2+1993b^2\text{≡}0+2+1\text{≡}3\text{≡}0\left(mod3\right)\)

\(x\in N;b>1\Rightarrow A>0+2+1993.2^2>3\)

\(\Rightarrow\)A là hợp số

Vậy ...

28 tháng 10 2016

b nguyên tố khác 3

áp dụng t/c "bình phương số lẻ luôn có dạng 3k+1" ta có:

nếu b =2 số chắn duy nhất A=3x+2+1993.4 chia hết cho 3

b^2=3k+1 

A=3x+2+1993(3k+1)=3x+1993.3k+3 luôn chia hết cho 3 với mọi x tự nhiên => dpcm

18 tháng 11 2017

Giả sử E là số tự nhiên

Biến đổi E ta có :

\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)

\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)

Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)

\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)

\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)

\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)

Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)

Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1

=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

21 tháng 10 2020

C=9n^3

1 tháng 8 2019

#)Giải :

Giả sử  \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp 

\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)

Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)

Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)

\(\Rightarrowđpcm\)

3 tháng 8 2019

cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn