Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)
A= x2+y2-4x+2y+7
= (x2-4x+4)+(y2+2y+1)+2
= (x-2)2+(y+1)2+2
Ta thấy: (x-2)2\(\ge0\)
(y+1)2\(\ge0\)
\(\Rightarrow\)(x-2)2+(y+1)2+2\(\ge2\)
\(\Rightarrow\)A\(\ge2\)
Vậy A>0 \(\forall x,y\)
\(A=x^2+y^2-4x+2y+7\)
\(=x^2+y^2-4x+2y+4+1+2\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2>0\forall x,y\)
5x^2+2y^2+4xy-4x-y+5=(4x^2+y^2+4xy)+(x^2-4x+4)+(y^2-y+1/4)+3/4 =(2x+y)^2+(x-2)^2+(y-1/2)^2+3/4 (1)
vi (2x+y)^2>=0 , (x-2)^2>=0 ,(y-1/2)^2>=0 (2)
tu 1 va 2 suy ra dieu phai chung minh
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
với mọi x,y
b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)
\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)
Bạn xem lại đề
2 câu trên đã có kết quả, mình giải quyết câu c nhá
5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3
=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1
=(2x + 1)2 + (y - 1)2 + (3y - x)2 + 1
(2x + 1)2 \(\ge\)0 với mọi x
(y - 1)2 \(\ge\) 0 với mọi y
(3y - x)2\(\ge\) 0 với mọi x và y
1>0
=> ĐPCM
A=,x2-4xy-4y2 +3
= (x-2y)2+3
do ( x-2y)2\(\ge0\forall x;y\)
=> (x-2y)2+3\(\ge3\)
=> A\(\ge3\)
vậy A \(>0\) với mọi số thực x;y
Bổ sung câu trả lời của bạn kuroba kaito
Khi và chỉ khi x - 2y =0
x =2y
trả lời giúp mình