Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a
3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9
=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4
=> -63/20 < 2x/3 < 19/36
=> -567/180 < 120x/180 < 95/180
=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)
=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)
1/b
( 3x + 5 )( 2x - 7 ) < 0
=> 3x + 5 > 0 và 2x - 7 < 0
hoặc 3x + 5 < 0 và 2x - 7 > 0
TH1 : 3x + 5 > 0 và 2x - 7 < 0
Vì 2x - 7 < 0
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 }
TH2 : 3x + 5 < 0 và 2x - 7 > 0
Vì 2x - 7 > 0
=> x > 3 ( 1 )
Vì 3x + 5 < 0
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }
Câu 1:
a: \(A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^7\left(1+7\right)\)
\(=8\left(1+7^3+...+7^7\right)⋮2\)
Do đó: A là số chẵn
b: \(A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
\(=400\left(7+7^5\right)⋮5\)
599 - 42 x 597 - 32 x 59
= 597.(52 - 42) - 32.59
= 597.(25 - 16) - 32.59
= 597.9 - 9.59
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
a,2x+53=135
2x=135-53
2x=82
x=82:2
x=41
bạn viết khó hỉu quá nên mk giúp bạn dc câu a thui
k hộ mk với