Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A = 19971999 - 19971998
=> A = 19971998.(1997-1)
=> A = 19971998 . 1996
Vậy a chia hết cho 4 (vì 1996 chia hết cho 4)
2) B = 19971998 - 19981999
Mà 19971998 là số lẻ; 19981999
=> 19971998 - 19981999 là số lẻ
Vậy đề bài sai.
Bài 1 bạn bổ sung đề bài
Bài 2
521a chia hết cho 8 =>21a chia hết cho 8 =>a=6
Để mình nghĩ câu b đã
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21
a) Ta có:
61997 + 61998 + 61999 - 129
= 61997.(1 + 6 + 62) - 3.43
= 61997.43 - 3.43
= 43.(61997 - 3) chia hết cho 43 (đpcm)
b) Ta có:
abba = 1000a + 100b + 10b + a = 1001a + 110b = 91.11a + 10.11b = 11.(91a + 10b) chia hết cho 11 (đpcm)