Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=\frac{2\left(n-3\right)}{n-3}+\frac{7}{n-3}=2+\frac{7}{n-3}\in Z\)
Suy ra \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{4;2;10;-4\right\}\left(n\in Z\right)\)
2n + 1 \(⋮\) n - 3
\(\Leftrightarrow\) 2n - 6 + 7 \(⋮\) n - 3
\(\Leftrightarrow\) 2(n - 3) + 7 \(⋮\) n- 3
\(\Leftrightarrow\) 7 \(⋮\) n - 3
\(\Leftrightarrow\) n - 3 \(\in\) {-7; -1; 1; 7}
\(\Leftrightarrow\) n \(\in\) {-4; 2; 4; 10} (n \(\in\) Z)
Ta có: \(\dfrac{1}{2}\cdot y+\dfrac{2}{3}\cdot y=\dfrac{7}{6}\Rightarrow y\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{7}{6}\Rightarrow\dfrac{7}{6}y=\dfrac{7}{6}\Rightarrow y=\dfrac{7}{6}:\dfrac{7}{6}=1\)
Vậy \(D=\left\{1\right\}\)
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
\(*)\) Với giá trị nào của \(n\) thì \(n-10;n+10;n+60\) là những số nguyên tố:
- Xét \(n=3k\Rightarrow n+60\) là hợp số
- Xét \(n=3k+1\Rightarrow n-10⋮3\)
Để \(n+10;n-10;n+60\) là những số nguyên tố thì \(n-10=3\) hay \(n=13\)
- Xét \(n=3k+2\Rightarrow n+10\) là hợp số
\(*)\) Khi \(n=13\Rightarrow n+90\) là số nguyên tố
Vậy \(n=13\)
\(\Rightarrow\) Với giá trị của \(n\) để \(n-10;n+10;n+60\) là những số nguyên tố thì \(n+90\) cũng là số nguyên tố (Đpcm)
a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3
a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
xét 2n-1=1 n=1
2n-1=-1 n=0
2n-1=3 n=2
2n-1=-3 n=-1
vậy n=\(\left\{-1;0;1;2\right\}\)
b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)
c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2
xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số
xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số
vậy n^2+2018 là hợp số
A = 21+22+23+24+....+22010
A = (21+22) + (23+24) + .... + (22009+22010)
A = 2(1+2) + 23(1+2) + .... + 22009(1+2)
A = 2 . 3 + 23. 3 + ..... + 22009. 3
A = 3 . (2 + 22 + .... + 22009)
Vì 3 chia hết cho 3
\(\Rightarrow\) 3 . (2 + 22 + .... + 22009)
Hay A chia hết cho 3
Vậy A chia hết cho 3
A = 21+22+23+24+....+22010
A = (21+22+23) + (24+25+26) + .... + (22008+22009+22010)
A = 2(1+2+22) + 24(1+2+22) + ..... + 22008(1+2+22)
A = 2 . 7 + 24. 7 + ..... + 22008. 7
A = 7 . (2+24+....+22008)
Vì 7 chia hết cho 7
\(\Rightarrow\) 7 . ( 2+24+....+22008) chia hết cho 7
Hay A chia hết cho 7
Vậy A chia hết cho 7
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
à mà bạn ơi, bạn có thể cho mình biết tại sao 3(2n + 3) lại = (6n + 10) không nhỉ?