Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Một số chia hết cho 9 khi và chỉ khi tổng các chữ số của nó chia hết cho 9.
Do đó:\(\left(a+b+c\right)⋮9\)
nên \(\overline{abc}⋮9\)
Mình không chắc lắm nha
Ta có: \(\dfrac{1}{2}\cdot y+\dfrac{2}{3}\cdot y=\dfrac{7}{6}\Rightarrow y\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{7}{6}\Rightarrow\dfrac{7}{6}y=\dfrac{7}{6}\Rightarrow y=\dfrac{7}{6}:\dfrac{7}{6}=1\)
Vậy \(D=\left\{1\right\}\)
a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :
\(12⋮n\)
\(\Leftrightarrow n\inƯ\left(12\right)\)
\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)
Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm
b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :
\(15⋮n-2\)
\(\Leftrightarrow x-2\inƯ\left(15\right)\)
Tới đây tự lập bảng zồi làm típ!
c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :
\(8⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(8\right)\)
Lập bảng rồi làm nhs!
\(4x\cdot\left(x:2\right)-3\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x\cdot\dfrac{x}{2}-3+6x=7-2x-2\)
\(\Leftrightarrow2x\cdot x-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x-5+2x=0\)
\(\Leftrightarrow2x^2-8+8x=0\)
\(\Leftrightarrow2\left(x^2-4+4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x_1=-2-2\sqrt{2};x_2=-2+2\sqrt{2}\)
\(4x\left(x:2\right)-3x\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x.\dfrac{x}{2}-3+6x-7+2x+2=0\Leftrightarrow2x^2+8x-8=0\Leftrightarrow2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-8=0\)
\(\Leftrightarrow\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\\x=-\sqrt{8}+2\end{matrix}\right.\)
Bạn tìm ước của 120 và tìm luôn bội của 12. Sau đó bạn tìm giao của hai tập hợp.
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
\(\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=\frac{2\left(n-3\right)}{n-3}+\frac{7}{n-3}=2+\frac{7}{n-3}\in Z\)
Suy ra \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{4;2;10;-4\right\}\left(n\in Z\right)\)
2n + 1 \(⋮\) n - 3
\(\Leftrightarrow\) 2n - 6 + 7 \(⋮\) n - 3
\(\Leftrightarrow\) 2(n - 3) + 7 \(⋮\) n- 3
\(\Leftrightarrow\) 7 \(⋮\) n - 3
\(\Leftrightarrow\) n - 3 \(\in\) {-7; -1; 1; 7}
\(\Leftrightarrow\) n \(\in\) {-4; 2; 4; 10} (n \(\in\) Z)