Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Bạn có thể tự làm
b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)
Để f(x)+g(x)-h(x)=0
thi x(2x+3)=0
suy ra x=0 hoặc x=-3/2
c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x
Chúc bạn học tốt!
a) \(f\left(x\right)=4x^2+3x-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)
\(a,x^2-4x+6\)
\(=x^2-2.2.x+2^2+2\)
\(=\left(x-2\right)^2+2\)
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+2\ge2\)
\(\Rightarrow\)biểu thức nhận giá trị dương với mọi x
\(b,x^2+5x+10\)
\(=x^2+2.\frac{5}{2}.x+\left(\frac{5}{2}\right)^2+\frac{15}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(\Rightarrow\)biểu thức luôn nhận giá trị dương với mọi x
\(c,4x^2-4xy+2y^2+3\)
\(=\left(2x\right)^2-2.2x.y+y^2+y^2+3\)
\(=\left(2x-y\right)^2+y^2+3\)
\(\hept{\begin{cases}\left(2x+y\right)^2\ge0\\y^2\ge0\end{cases}\Rightarrow\left(2x+y\right)^2+y^2\ge0}\)
\(\Rightarrow\left(2x+y\right)^2+y^2+3\ge3\)
\(\Rightarrow\)biểu thức luôn nhận giá trị dương với mọi x
\(a,x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\)
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+2\ge2>0\)
\(b,x^2+5x+10=x^2+2\cdot\frac{5}{2}\cdot x+\frac{25}{4}+\frac{15}{4}=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj
ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8
= 0,7x4+0,3x4+0,2x2-1/5x2 -5+8
= x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R
xem rùi cho ý kiến đừng nói này nói nọ !!!!
duyệt đi
a)
+) A(x) + B(x) = 3x^4 - 5x^3 + 2x^2 + x - 5 - 3x^4 + 5x^3 - x^2 + x + 5
A(x) + B(x) = ( 3x^4 - 3x^4 ) - ( 5x^3 - 5x^3 ) + ( 2x^2 - x^2 ) + ( x + x ) - ( 5 - 5 )
A(x) + B(x) = x^2 + 2x
+) Tương tự
b)
Ta thấy : C(x) = x^2 + 2x = xx + 2x = x(x+2)
=> G/S : 2014 được tách thành 2 thừa số cách nhau 2 đv => Không có t/h nào khi x nguyên
Ai ngang qua xin để lại 1 L-I-K-E
a , x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7)
= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7
= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7)
= 3
Vậy GTBT ko phụ thuộc vào biến
b, (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x
= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x
= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5)
= -6
Vậy GTBT ko phụ thuộc vào biến
a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )
= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7
= 3
Vậy biểu thức không phụ thuộc vào biến.
b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x
= 2x3 -4x2 +x - 1 - 5 + x2 - 2x3 +3x2 - x
= -1 - 5 = -6
Vậy biểu thức không phụ thuộc vào biến x
A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2
= 5x2 + 5
Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)
=> A(x) luôn dương với mọi x
B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9
= -x2 - 2
Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)
=> B(x) luôn âm với mọi x
\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)
\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)