K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2 + 2x + 2 = 0

x^2 + x + x + 1 + 1 

= x(x + 1) + (x + 1) + 1

= (x + 1)(x + 1) + 1

= (x + 1)^2 + 1

mà (x + 1)^2 \(\ge\) 0 với mọi x

Vậy đa thức trên vô nghiệm

30 tháng 4 2021

Ta có : \(A\left(x\right)=x^2+2x+2015=x^2+2x+1+2014\)

\(=\left(x+1\right)^2+2014>0\forall x\)do \(\left(x+1\right)^2\ge0\forall x;2014>0\)

Vậy đa thức trên ko có nghiệm ( đpcm ) 

7 tháng 5 2018

\(f\left(x\right)=x^2+x+x+2\)

\(f\left(x\right)=x^2+2x+1+1\)

\(f\left(x\right)=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)

\(\Leftrightarrow f\left(x\right)\ge1\)

Vậy f(x) > 0 nên phương trình không có nghiệm

7 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+x+x+2\)

                      \(=x^2+x+x+1+1\)

                      \(=x\left(x+1\right)+\left(x+1\right)+1\)

                      \(=\left(x+1\right)\left(x+1\right)+1\) 

                      \(=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức f(x) không có nghiệm

_Chúc bạn học tốt_

21 tháng 5 2021

\(a)\)

\(\text{Ta có:}\)

\(x^2-2=0\)

\(\rightarrow x^2=x\)

\(\rightarrow x=\pm\sqrt{2}\)

Vậy ...

\(b)\)

\(\text{Ta có:}\)

\(x^2+5x+7\)

\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy ...

21 tháng 5 2021

a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy đa thức ko có nghiệm 

10 tháng 4 2015

Do x^2+2x>0,mà x^2+2x+2>2=> x^2+2x+2 không có nghiệm

22 tháng 4 2017

Cho đa thức: \(x^2+2x+2=0\)

\(=x^2+x+x+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)-1+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)+1=0\)

\(=\left(x+1\right).\left(x+1\right)=-1\)

\(\left(x+1\right)^2=-1\)(Vô lí)

\(\Rightarrow x^2+2x+2\) vô nghiệm

8 tháng 2 2021

*Chứng tỏ \(x=\frac{1}{2}\) là nghiệm của đa thức \(P\left(x\right)=4x^2-4x+1\)

Cho \(P\left(x\right)=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow4x^2-2x-2x+1=0\)

\(\Rightarrow2x\left(2x-1\right)-\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

\(\Rightarrow P\left(x\right)\) có nghiệm là \(x=\frac{1}{2}\)

\(\Rightarrowđpcm\)

*Chứng tỏ đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm

Ta có: \(4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1>0\)

hay \(Q\left(x\right)>0\)

\(\Rightarrow\)Đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm   (đpcm)

26 tháng 5 2016

A(x)  \(=x^4+2x^2+1\)

\(=x^4+x^2+x^2+1\)

\(=x^2.\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left(x^2+1\right)\)

\(=\left(x^2+1\right)^2\)

Mà \(x^2+1\ge1\) => \(\left(x^2+1\right)^2\ge1^2\)

Vậy đa thức vô nghiệm.

 

26 tháng 5 2016

A(x) = x^4 + 2x^2 + 1

vì \(x^4\ge0\) với mọi x

\(2x^2\ge0\) với mọi x

\(\Rightarrow x^4+2x^2+1\ge1>0\)

=> đa thức A(x) không có nghiệm