K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Bn viết rõ đề ra đi 

3 tháng 4 2018

P(x)= - x+ x- x+ x - 1

21 tháng 2 2020

Ta xét 3 khoảng giá trị:

+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này f(x) vô nghiệm.

+) Nếu \(0< x< 1\)

Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)

Vì 0 < x < 1 nên \(x^5,1-x^3>0\)

Áp dụng bđt Cauchy, ta được:

\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)

\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)

Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)

Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)

\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)

Ở khoảng này đa thức cũng vô nghiệm.

+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này đa thức cũng vô nghiệm.

Vậy đa thức f(x) vô nghiệm

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)

21 tháng 4 2017

a) 4x2+4x+2

=4x2+2x+2x+2

=2x.(2x+1)+2x+1+1

=2x.(2x+1)+(2x+1)+1

=(2x+1)2+1

Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm

b) x2+x+1

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm

Phần c để tớ nghĩ đã

mình không biết

14 tháng 4 2017

cái này phải dùng skill bí truyền

20 tháng 5 2021

a) Cho x2-1=0
            x2=1
            x= 1  hoặc -1

b)Cho P(x)=0
          -x2 + 4x - 5 = 0
          -x2 + 4x = 5
          -x   . x + 4x = 5
          x(-x+4) = 5

TH1: x= 5
TH2: -x+4 = 5
         -x= 1
          x=-1
xong bạn thay số rồi kết luận nhá

20 tháng 5 2021

a,\(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

KL:...

b,\(P\left(x\right)=-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)

\(\Rightarrow VN\)

vô nghiệm khi nào vậy bạn

Đề thiếu rồi bạn ạ

31 tháng 3 2016

No co nghiem chu ban 

27 tháng 4 2016

\(A\left(x\right)=x^2-4x+7\)

\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)

\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)

\(\left(x-2\right)^2+3\ge3>0\) với mọi x E R

=>(1) không xảy ra

=>A(x) vô nghiệm   (đpcm)

\(p\left(x\right)=x^4+x^3+x+1\)

\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)

Vậy............................

13 tháng 5 2018

1)

a) Tìm nghiệm của đa thức $f(x) = 4x - x^2$

Cho $f(x) = 0$

$⇒ 4x - x^2 = 0$

$⇒ x(4 - x) = 0$

$⇒ x = 0$ hoặc $4 - x = 0$

$⇒ x = 0$ hoặc $x = 4$

Vậy nghiệm của đa thức là $x = 0$ và $x = 4$

13 tháng 5 2018

a) Nghiệm là 0

b)Vì \(x^2\) ≥ 0

\(x^4\) ≥ 0

1>0

nên \(x^2\) +\(x^4\) +1 >0

⇒f(x)= \(x^2\) +\(x^4\) +1 ko có nghiệm