K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

do \(4\left(2x+3y\right)+9x+5y=17x+17y=17\left(x+y\right)\)chia hết cho 17 \(\Rightarrow9x+5y\) chia hết cho 17

30 tháng 9 2015

7a-b chia hết cho 9

=>7a-b+36b chia hết cho 9

=>7a+35b chia hết cho 9

=>7(a+5b) chia hết cho 9

Vì (7;9)=1=>a+5b chia hết cho 9

=>đpcm

10 tháng 2 2018

kho qua

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

21 tháng 6 2016

Ta có:
\(3B=3^2+3^3+3^4+...+3^{301}\)

=> \(B=\frac{2B}{2}=\frac{3B-B}{2}=\frac{3^{301}-3}{2}=\frac{3\left(3^{300}-1\right)}{2}\)

Tiếp tục chứng minh B chẵn, ta co: \(3^{300}=\left(3^4\right)^{75}=\left(...1\right)^{75}=...1\)

=> \(3^{300}-1=...1-1=...0\) CHIA HẾT CHO 2

NM
2 tháng 5 2021

a. ta có \(11\equiv1mod10\Rightarrow11^{200}\equiv1mod10\)

nên \(11^{200}-1\equiv0mod10\). Vậy \(11^{200}-1\) chia hết cho 10.

b. ta có \(12\equiv2mod10\Rightarrow12^{200}\equiv2^{200}mod10\)

nên \(12^{200}-2^{200}\equiv0mod10\). Vậy \(12^{200}-2^{200}\) chia hết cho 10.

24 tháng 12 2017

Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)

A= 3a+ 12b+ 10a+ b.

A= 13a+ 13b\(⋮\) 13.

=> A\(⋮\) 13.

Vì 10a+ b\(⋮\) 13.

=> 3( a+ 4b)\(⋮\) 13.

Mà 3 không\(⋮\) 13.

=> a+ 4b\(⋮\) 13.

Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.

3 tháng 5 2020

Đặt A= a + 4b

      B= 10a + b

Ta có: 10A- B= 10(a +4b) - (10a +b)

                    = 10a + 40b - 10a - b

                    = (10a - 10a) + (40b - b)

                    =        0        +    39b

                    = 39b

                    = 13 . 3b chia hết cho 13

=> 10A - B chia hết cho 13

- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13

hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13

- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13

hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13

       Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.

   Chúc bạn học tốt!

2 tháng 5 2021

Sorry Nha Toán lớp 6