K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Vì 4n+3​​ phần 5n+4 là phân số tối giản

Gọi ưcln(4n+3;5n+4) là d

10 tháng 2 2019

giúp mình vs nha

17 tháng 7 2017

\(\frac{4n+3}{5n+4}\)

Ta có d là ƯCLN(4n+3;5n+4)

=>4n+3:d

    5n+4:d

=>20n+15:d

    20n+16:d

=>1:d

=>\(\frac{4n+3}{5n+4}\)là phân số tối giản

(chú ý sau dấu => có hoăc móc nhé)

20 tháng 2 2016

Gọi UCLN(2n+1,4n+6)=d

Ta có:2n+1 chia hết cho d

4n+6 chia hết cho d

=>2(2n+1) chia hết cho d

4n+6 chia hết cho d

=>4n+2 chia hết cho d

4n+6 chia hết cho d

=>(4n+6)-(4n+2) chia hết cho d

=>4 chia hết cho d

=>d={1,2,4}

Mà 4n+6 không chia hết cho 4

=>d={1,2}

Mà 2n+1 không chia hết cho 2

=>d=1

Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản

27 tháng 3 2017

Gọi ƯCLN  của 4n+3 và 5n+4 là d ( d là thuộc N )

=> 4n+3 chia hết cho d và 5n+4 chia hết cho d

=>5.(4n+3) chia hết cho d và 4.(5n+4) chia hết cho d

=> 20n+15 chia hết cho d và 20n+16 chia hết cho d

=> (20n+16)-(20n+15) chia hết cho d

=>20n+16-20n-15 chia hết cho d

=> (20n-20n)+(16-15) chia hết cho d

=> 1 chia hết cho d

=> d=1

Vậy 4n+3/5n+4 là phân số tối giản với mọi n thuôc tập hợp N*

Ai chưa từng có người yêu thì kết bạn và tk cho mik nha !!! >.<

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

16 tháng 3 2018

gọi \(\text{Ư}CLN_{\left(4n+3;5n+4\right)}=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}}}\)

\(\Rightarrow20n+16-\left(20n+15\right)⋮d\)

\(\Rightarrow20n+16-20n-15⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy..................

Gọi d là Ư C L N(4n + 3, 5n + 4)

Ta có: \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}}\)

       =>\(\left(20n+16\right)-\left(20n+15\right)⋮d\)

       =>        \(1⋮d\)=> \(d=1\)

Vậy phân số tối giản với mọi n thuộc N*

Gọi d=ƯCLN(5n+4;4n+3)

=>20n+16-20n-15 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

19 tháng 4 2023

Gọi \(\text{Ư}c\left(5n+4;4n+3\right)=d\)

\(=>\left\{{}\begin{matrix}5n+4⋮d\\4n+3⋮d\end{matrix}\right.=>\left\{{}\begin{matrix}20n+16⋮d\\20n+15⋮d\end{matrix}\right.\)

\(=>\left(20n+16\right)-\left(20n+15\right)⋮d\)

\(=>1⋮d\)

\(=>d\in\left\{-1;1\right\}\)

\(=>M\) là phân số tối giản

15 tháng 2 2019

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N