K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016
  • Với a = 5 => a2-1=24 chia hết 24
  •  Ta sẽ chứng minh khẳng định sau : Mọi số nguyên tố lớn hơn 5 đều có thể viết dưới dạng 6m+1 hoặc 6m-1

Thật vậy : Mọi số tự nhiên đều có thể viết dưới dạng \(6m\pm1,6m\pm2,6m\pm3\) . Mọi số nguyên tố khác 2 và 3 đều không chia hết cho 2 và 3 => Chúng chỉ có một trong hai dạng 6m+1 hoặc 6m-1

Xét số nguyên tố \(a=6m+1\Rightarrow a^2-1=\left(6m+1\right)^2-1=36m^2+12m=12m\left(3m+1\right)=12m\left(2m+m+1\right)=24m^2+12m\left(m+1\right)\)

Vì m(m+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2 => 12m(m+1) chia hết cho 24 => a2-1 chia hết cho 24

Với trường hợp a = 6m-1 chứng minh tương tự.

Vậy ta có điều phải chứng minh.

10 tháng 7 2016

thanks

7 tháng 4 2016

p là số ngyên tố lớn hơn 3=>p không chia hết cho 3

=>p2=3k+1

=>p2-1=3k+1-1=3k chia hết cho 3

=>đpcm

7 tháng 4 2016

Xét số nguyên tố p khi chia cho 3.Ta có: p=3k+1 hoặc p=3k+2 ( kN*)
Nếu p=3k+1 thì p2-1 = (3k+1)2 -1 = 9k2+6k chia hết cho 3
Nếu p=3k+2 thì p2-1 = ( 3k+2)2-1 = 9k2 + 12k chia hết cho 3
Vậy p2-1 chia hết cho 3.

p là số nguyên tố lớn hơn 3=>p2 chia 3 dư1

=>p2-1 chia hết cho 3

=>đpcm

21 tháng 1 2016

trong chtt không có đâu

19 tháng 3 2017

Các số ngyên tố lớn hơm 3 thường có dạng 3k + 1; 3k + 2 ( k \(\in\) N* )

TH1 : p = 3k + 1 => p2 - 1 = (3k + 1)2 - 1 = [(3k + 1) - 1][(3k + 1) + 1] = 3k(3k + 2) chia hết cho 3 (1)

TH2 : p = 3k + 2 => p2 - 1 = (3k + 2)2 - 1 = [(3k + 2) - 1][(3k + 2) + 1] = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮3\) (2)

Từ (1) ; (2) => p2 - 1 chia hết cho 3 (đpcm)

Lưu ý : (3k + 1)2 - 1 = [(3k + 1) - 1][(3k + 1) + 1] là do Áp dụng hđt : a2 - b2 = (a - b)(a + b) nha !!!

19 tháng 3 2017

bạn xét  p>3 p có dạng 3k+1 hoặc 3k+2 thay vào p^2-1 ta cm được

9 tháng 9 2014

a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

 

9 tháng 9 2014

a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

14 tháng 2 2016

ta co : a2-1 = (a+1) . (a-1)

p>3 nen p la so le .suy ra a+1 va a-1 la hai so chan lien tiep nen chia het cho 2.4=8

lai co p>3 nen a+1 hoac a-1 chia het cho 3

ma (3,8)=1 va 3.8=24

suy ra a^2-1 chia het cho 24

26 tháng 7 2016

Vì a nguyên tố lớn hơn 3 => a lẻ => a2 chia 8 dư 1 =>a2-1 chia hết cho 8 

Vì thế a2 chia 3 cũng dư 1 => a2-1 chia hết cho 3 

mà (3;8) =1 =>a2-1 chia hết cho 24

26 tháng 7 2016

Câu hỏi của Lương Nhất Chi - Toán lớp 6 | Học trực tuyến bấm vào