Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
Vì 2x^2-6x > 0 với mọi x
=> 2x^2-6x+2020 > 0+2020 với mọi x
=> 2x^2-6x+2020 > 2020 với mọi x
=> A(x) > 0 ( khác 0 )
=> A(x) vô nghiệm
P(-5)=\(\left(-5\right)^2+6.\left(-5\right)+5\)=0
vậy -5 là n\(_o\) của P(x)
Lưu ý: n\(_o\) là kí hiệu của từ nghiệm
a:
Sửa đề: f(2)=4
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x
=>F(x) vô nghiệm
\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)
\(\Rightarrow f\left(x\right)\) vô nghiệm