K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

NV
18 tháng 3 2023

\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)

\(\Rightarrow f\left(x\right)\) vô nghiệm

3 tháng 4 2018

không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)

8 tháng 5 2022

\(\text{∆}'=3^2-2.2020\)

\(=-4031< 0\)

⇒ phương trình vô nghiệm

8 tháng 5 2022

Vì 2x^2-6x > 0 với mọi x

=> 2x^2-6x+2020 > 0+2020 với mọi x

=> 2x^2-6x+2020 > 2020 với mọi x

=> A(x) > 0 ( khác 0 )

=> A(x) vô nghiệm

22 tháng 4 2018

P(-5)=\(\left(-5\right)^2+6.\left(-5\right)+5\)=0

vậy -5 là n\(_o\) của P(x)

Lưu ý: n\(_o\) là kí hiệu của từ nghiệm

22 tháng 4 2018

thanks

24 tháng 3 2017

Xét tổng f(x)+g(x)=2x3+10x2-6x+7-2x3-8x2+6x-7=2x2>= 0

Vậy ...

a:

Sửa đề: f(2)=4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ