K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ

9 tháng 8 2018

Thay x = -3 thì 1 là nghiệm của P(x)

Thay x = 5 thì 5 là nghiệm của P(x)

Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.

Chúc bạn học tốt.

24 tháng 7 2020

\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)

Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)

Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)

24 tháng 7 2020

\(x^2+\left(x-1\right)^2\)

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)

=> Vô nghiệm ( đpcm ) 

1 tháng 3 2019

a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)

có nghiệm là -2

b,ta có:

1 tháng 3 2019

Câu a làm giống bạn kia đc rồi

b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((

Lục đục nãy giờ mới thấy :/

2 tháng 5 2018

Với \(x=\sqrt{4}\)ta có :

\(\left(x^2-4\right)P\left(\sqrt{4}+1\right)=\left(x^2-3\right)P\left(\sqrt{4}\right)\)

\(\Rightarrow\left(4-4\right)P\left(\sqrt{4}+1\right)=\left(4-3\right)P\left(\sqrt{4}\right)\)

\(\Rightarrow0.P\left(\sqrt{4}+1\right)=P\left(\sqrt{4}\right)\Rightarrow P\left(\sqrt{4}\right)=0\)

Vậy \(\sqrt{4}\)là 1 nghiệm của P(x)

Với \(x=\sqrt{3}\)

\(\Rightarrow\left(3-4\right)P\left(\sqrt{3}+1\right)=\left(3-3\right)P\left(\sqrt{3}\right)\)

\(\Rightarrow-P\left(\sqrt{3}+1\right)=0\)

\(\Rightarrow P\left(\sqrt{3}+1\right)=0\)

Vậy............

Tự làm tiếp nha

2 tháng 5 2018

vì (x2-4)P(x+1) = (x2-3)P(x) với mọi x nên :

- khi x2=4 =>  +) x=2 thì 0.P (x+1)=1.P(x) =>P(x) = 0.  vậy x=2 là 1 nghiệm của f(x)

                       +) x=-2 thì 0.P (x+1)=1.P(x) =>P(x) = 0.  vậy x=-2 là 1 nghiệm của f(x)

- khi x2=3 =>  +)  x=\(\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0.  vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)

                       +)  x= \(-\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0.  vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)

Do đó f(x) có ít nhất 4 nghiệm là: 2; -2; \(-\sqrt{3}\)\(\sqrt{3}\)

26 tháng 4 2019

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\forall x\)

Vậy đa thức p(x) vô nghiệm

26 tháng 4 2019

Ta có : \(P\left(x\right)=x^2+1\)

 => \(x^2+1=0\)

=> \(x^2=\left(-1\right)\)

=> \(P\left(x\right)=x^2+1\)  Vô nghiệm

3 tháng 4 2018

không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp