Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x2+(x+1)2
Ta có:x2≥0 ∀x
(x+1)2≥0 ∀x
=>x2+(x+1)2≥0 ∀x
Vậy đa thức f(x) vô nghiệm.
ta có:x2>0,(x+1)2>0(với mọi x)
=> x2+(x+1)2>0=>đa thức x2+(x+1)2 ko có nghiệm
a:
Sửa đề: f(2)=4
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
Với x = -1
Ta có: f(-1) = (-1)2 - 4.(-1) - 5 = 0
Với x = 5
Ta có: f(x) = 52 - 4.5 -5 = 0
Vậy x = -1, x = 5 là nghiệm của đa thức f(x)
Thay x = -1 vào đa thức f(x) ta đc:
f(1) = (-1)2 - 4.(-1) - 5 = 1 + 4 -5 = 0
Vậy x = -1 là nghiệm của đa thức f(x) = x2 - 4x - 5
Thay x = 5 vào đa thức f(x) ta đc:
f(5) = 52 - 4.5 - 5 = 25 - 20 - 5 = 0
Vậy x = 5 là nghiệm của đa thức f(x) = x2 - 4x - 5
ài 2:
a) f(1) = a + b + c + d = 0
Vậy 1 là 1 trong các nghiệm của f(x)
b) f(x)=5x3−7x2+4x−2f(x)=5x3−7x2+4x−2 có tổng các hệ số là : 5 - 7 + 4 - 2 = 0
Theo a) \Rightarrow 1 là 1 trong các nghiệm của f(x).
Bài 3:
f(x)=3x3+4x2+2x+1f(x)=3x3+4x2+2x+1
→f(−1)=−3+4−2+1=0→f(−1)=−3+4−2+1=0
Vậy (-1) là một trong các nghiệm của f(x).
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp