K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Ta có:

\(x^2+y^2+z^2-4x+2y+6z\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\) \(\left(z^2+6z+9\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\)

Mà : \(\left(x-2\right)^2\ge0\forall x\)

        \(\left(y+1\right)^2\ge0\forall y\)

          \(\left(z+3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\) ( luôn đúng )

\(\Rightarrow x^2+y^2+z^2+14\ge4x-2y-6z\left(đpcm\right)\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2=0\\y+1=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\\z=-3\end{cases}}\)

Vậy ....

9 tháng 3 2019

Cái này phải là bất đẳng thức bạn nhé!

\(x^2+y^2+z^2+14\ge4x-2y-6z\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2+6z+9\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2+\left(z+3\right)^2\ge0\)

Bất đẳng thức cuối đúng vì mỗi hạng tử không âm. Do đó bất đẳng thức đã cho là đúng.

Dấu bằng xảy ra khi và chỉ khi \(x=-2;y=1;z=-3\)

17 tháng 8 2015

Đề đúng

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)

\(\Leftrightarrow x=2;y=-1;z=3\)

1 tháng 12 2019

Ta có (x2+4x+4)+(y2+2y+1)+(z^2+6z+9)>=0

14 tháng 7 2019

\(x^2+y^2+z^2=4x-2y+6z-14\Leftrightarrow x^2-4x+y^2+2y+z^2-6z+14=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\left(z^2-6z+9\right)=0\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0matkhac:\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0mà:\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right..Vậy:x=2;y=-1;z=3\)

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 1:

Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)

Xét hiệu:

\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)\)

\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)

\(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm

\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)

\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:

\(111(x-2)\geq 1998\)

\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)

\(\Leftrightarrow x\geq 20\)

Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.

5 tháng 12 2019

\(x^2+y^2+z^2+2x-4y-6z+14\)

\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)\(\left(z-3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

hay \(x^2+y^2+z^2+2x-4y-6z+14\ge0\)\(\forall x,y,z\)

13 tháng 10 2019

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}}\)

\(\Leftrightarrow\) \(x^2\)+    \(y^2\) +     \(z^2\) -    \(4x\)+      \(2y\) -      \(6z\) +    \(14\) \(=\) \(0\)

\(\Leftrightarrow\) (  \(x^2\) -     \(4x\) +    \(4\)  )   +      (   \(y^2\) +    \(2y\) +     \(1\) )   \(=\) \(0\)

\(\Leftrightarrow\) (  \(x-2\))2   +   \(\left(y+1\right)^2\) +    \(\left(z-3\right)^2\) \(=\) \(0\)

\(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)

29 tháng 7 2020

Bài làm:

Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)

30 tháng 7 2020

x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )