Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/20 + 1/20 + 1/20 + ... + 1/20 + 1/20 < 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 < 1/10 + 1/10 + 1/10 + ... + 1/10 + 1/10 = 10/20 < S < 10/10 \(\Rightarrow\)1/2 < S < 1 ( đpcm )
Ta có : 1/11+1/12+1/13+...+1/19+1/20 > 1/20+1/20+1/20+...+1/20+1/20 =10/20=1/2
có tất cả 10 phân số 1/20
=> S > 1/2
1/11+1/12+1/13+...+1/19+1/20 < 1/10+1/10+1/10+...+1/10+1/10 =10/10=1
có tất cả 10 phân số /10
=> S<1
=> 1/2 < S <1
Ta thấy: \(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(\frac{1}{13}>\frac{1}{20}\)
................
\(\frac{1}{19}>\frac{1}{20}\)
=>\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)
=>\(S>\frac{10}{20}\)
=>\(S>\frac{1}{2}\)(1)
Lại có:
\(\frac{1}{11}<\frac{1}{10}\)
\(\frac{1}{12}<\frac{1}{10}\)
\(\frac{1}{13}<\frac{1}{10}\)
................
\(\frac{1}{20}<\frac{1}{10}\)
=>\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
=>\(S<\frac{10}{10}\)
=>S<1 (2)
Từ (1) và (2)
=>1/2<S<1
=>ĐPCM
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Ta thấy:
\(\dfrac{3}{10}>\dfrac{3}{15}\\\dfrac{3}{11}>\dfrac{3}{15}\\ \dfrac{3}{12}>\dfrac{3}{15}\\ \dfrac{3}{13}>\dfrac{3}{15}\\ \dfrac{3}{14}>\dfrac{3}{15} \)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>5\cdot\dfrac{3}{15}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>1\left(1\right)\)
Mặt khác:
\(\dfrac{3}{10}< \dfrac{3}{9}\\ \dfrac{3}{11}< \dfrac{3}{9}\\ \dfrac{3}{12}< \dfrac{3}{9}\\ \dfrac{3}{13}< \dfrac{3}{9}\\ \dfrac{3}{14}>\dfrac{3}{9}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< 5\cdot\dfrac{3}{9}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{5}{3}< 2\left(2\right)\)
Từ (1) và (2) ta có: \(1< S< 2\)