Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
3n + 2 - 2n + 2 + 3n - 2n
= 3n . 32 - 2n . 22 + 3n.1 - 2n.1
= 3n.(9 + 1) - 2n.(4 + 1)
= 3n . 10 - 2n . 5
= 3n . 10 - 2n - 1 . 2 . 5
= 3n . 10 - 2n - 1 . 10
= 10.(3n - 2n - 1)
Vậy với mọi n thì 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3
1)Ta có: n2 +12n = n(n + 12 )
Nếu n > 2 thì n( n+ 12) chia hết cho n.Là hợp số
Nếu n= 0 thì n(n+12) = 0 => không phải là hợp số cũng không là số nguyên tố
Nếu n = 1 thì n(n +12) = 13 -> là số nguyên tố
Vậy n=1
b) Nếu n > 0 thì 3n + 6 chia hết cho 3 => là hợp số
Nếu n= 0 thì 3n + 6 = 7 => là số nguyên tố
Vậy n = 0
2) Vì 1050 chia hết cho 5 và 5 chia hết cho 5 nên
1050 - 5 sẽ chia hết cho 5 => là hợp số