Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)
Chứng tỏ: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)
\(=\left(k+1\right).3k=VP\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)
Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
3S=n(n+1)(n+2)
\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
pt \(\Leftrightarrow\)\(19k+190=A^2\)\(\Leftrightarrow\)\(k=\frac{A^2-190}{19}\)
Để k nhỏ nhất và \(k\inℕ^∗\) thì \(\frac{A^2-190}{19}=\frac{A^2}{19}-19\) nhỏ nhất và \(A^2>190\)\(\Leftrightarrow\)\(A\ge14\); \(A^2⋮19\)
Mà 19 là số nguyên tố nên để \(\frac{A^2-190}{19}\) nhỏ nhất và \(A^2⋮19\) thì \(A=19\left(tm:A\ge14\right)\)
\(\Rightarrow\)\(k=\frac{A^2-190}{19}=\frac{19^2-190}{19}=9\)
Ta có :
1/n - 1/n + k
= n + k - n / n . ( n + k )
= k / n . ( n + k )
Ta có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\) (dpcm)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
=> điều phải chứng minh
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)
Vì n(n+k) chia hết cho cả n và n + k nên ta lấy n(n+k) là mẫu chung
\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
k(k+1)(k+2)-(k-1)k(k+1)
=(k+1)(k2+2k)-(k2-k)(k+1)
=(k+1)[(k2+2k)-(k2-k)]
=(k+1)[k2+2k-k2+k]
=(k+1)[(k2-k2)+(2k+k)]
=(k+1)3k (Đpcm)