K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

pt \(\Leftrightarrow\)\(19k+190=A^2\)\(\Leftrightarrow\)\(k=\frac{A^2-190}{19}\)

Để k nhỏ nhất và \(k\inℕ^∗\) thì \(\frac{A^2-190}{19}=\frac{A^2}{19}-19\) nhỏ nhất và \(A^2>190\)\(\Leftrightarrow\)\(A\ge14\)\(A^2⋮19\)

Mà 19 là số nguyên tố nên để \(\frac{A^2-190}{19}\) nhỏ nhất và \(A^2⋮19\) thì \(A=19\left(tm:A\ge14\right)\)

\(\Rightarrow\)\(k=\frac{A^2-190}{19}=\frac{19^2-190}{19}=9\)

14 tháng 7 2016

k(k+1)(k+2)-(k-1)k(k+1)

=(k+1)(k2+2k)-(k2-k)(k+1)

=(k+1)[(k2+2k)-(k2-k)]

=(k+1)[k2+2k-k2+k]

=(k+1)[(k2-k2)+(2k+k)]

=(k+1)3k (Đpcm)

24 tháng 10 2020

Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0

A=1k+2k+...+(n-1)k+n; 2B=2(1+2+...+n)=n(n+1)

2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)

2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n

Vậy A \(⋮\)B

22 tháng 3 2017

Ta có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)

Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)

22 tháng 3 2017

Ta có:

\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left[k+2-k+1\right]\)

\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)

\(=k\left(k+1\right).3\)

\(=3k\left(k+1\right)\)

\(\Rightarrow VT=VP\)

Vậy với \(k\in N\)* thì ta luôn có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)

27 tháng 7 2016

\(D=\left(4-5x\right)^{2k}-3^2=\left(4-5x\right)^{2k}-9\)

Vì \(\left(4-5x\right)^{2k}\ge0\Rightarrow D=\left(4-5x\right)^{2k}-9\ge9\)

=>Dmin=(4-5x)2k-9=9

=>(4-5x)2k=0

=>4-5x=0

=>5x=4

=>x\(=\frac{4}{5}\)

Vậy Dmin khi x=\(\frac{4}{5}\)

27 tháng 7 2016

do (4-5x)2k\(\ge\)0 với mọi x

=>D=(4-5x)2k-32\(\ge\)-9 với mọi x

Dấu bằng xảy ra khi:(4-5x)2k-32=9

=>(4-5x)2k=0

=>4-5x=0

=>5x=4

=>x=\(\frac{4}{5}\)

vậy D min = -9 tại x=\(\frac{4}{5}\)=0,8

26 tháng 2 2018

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)

\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)

\(=\left(k+1\right).3k=VP\)

28 tháng 1 2016

n