Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 5+5^2+5^3+...+5^11
= (5+5^2)+...+(5^10+5^11)
= 5(1+5)+....+5^10(1+5)
= 5.6+...+5^10.6
= (5+...+5^10).6 chia hết cho 6
\(A=5+5^2+5^3+5^4=....+5^{10}+5^{11}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{10}+5^{11}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{10}\left(1+5\right)\)
\(=5.6+5^3.6+....+5^{10}.6\)
\(=6\left(5+5^3+....+5^{10}\right)⋮6\left(ĐPCM\right)\)
Vậy \(A⋮6\)
Bài 1
4n+5 \(⋮\) 2n+1
Ta có 4n+5 = 2(2n+1) + 3
Mà 2 (2n+1) \(⋮\) 2n+1 để 4n+5 \(⋮\) 2n+1
Thì => 3\(⋮\)2n+1 hay 2n+1 \(\in\) Ư (3(={1;3}
Ta có bảng sau
2n+1 | 1 | 3 |
n | 0 | 1 |
Vậy n\(\in\) {0;1}
Bài 2 :
a, chứng minh A chia hết cho 3
A = 21 + 22 + ...+ 22010
A = (21 +22 ) + (23 + 24 ) + ...+ (22009 + 22010 )
A= 21(1+2) + 23(1+2) + .....+ 22009(1+3)
A = 21 .3 + 23.3+....+22009.3
A = 3(21 + 23 + ...+ 22009) \(⋮\) 3
=> đpcm
b, chứng minh chia hết cho 7
A = 21 + 22 + ...+ 22010
A = ( 21 + 22 + 23 ) + .....+ (22008 + 22009 + 22010)
A = 21(1+2+22 ) + ....+ 22008(1+2+22)
A = 21.7 + ....+22008.7
A = 7(21+ ...+ 22008) \(⋮\) 7
=> đpcm
\(4n+5⋮2n+1\)
\(2\left(2n+1\right)+3⋮2n+1\)
\(3⋮2n+1\)hay \(2n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
2n + 1 | 1 | 3 |
2n | 0 | 2 |
n | 0 | 1 |
\(A=2+2^2+...+2^{2010}\)
\(=2\left(1+2\right)+...+2^{2019}\left(1+2\right)\)
\(=2.3+...+2^{2019}.3=3\left(2+...+2^{2019}\right)⋮3\)
hay \(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+...+2^{2008}.7=7\left(2+...+2^{2008}\right)⋮7\)
Nên ta có đpcm
1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )
D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )
D = 5 . 6 + ... + 5^99 . 6
D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )
2. gợi ý : nhóm 5 số vào một
3. Đề phải là 165 - 215
165 - 215
= (24)5 - 215
= 220 - 215
= 215 ( 25 - 1 )
= 215 . 31 chia hết cho 31
4. đề sai
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\) (đpcm)
Lời giải:
Ta có:
\(A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)\)
\(=(3.1+3.3+3.9)+(3^4.1+3^4.3+3^4.9)+(3^7.1+3^7.3+3^7.9)\)
\(=3.(1+3+9)+3^4\left(1+3+9\right)+3^7.\left(1+3+9\right)\)
\(=3.13+3^4.13+3^7.13\)
\(=13.(3+3^4+3^7)\) ⋮ 13 . Vậy: A ⋮ 13
Chúc bạn học tốt!Tick cho mình nhé!
1.A=5+52+....+5100
<=> 5A=52+53+.....+5101
<=> 5A-A=(52+53+....+5101)-(5+52+....+5100)
<=> 4A=5101-5
<=> \(A=\frac{5^{101}-5}{4}\)
2. Ta có : 4A=5101-5
<=> 4A+5=5101
Vậy x=101.
3. \(A=5+5^2+....+5^{100}\)
\(\Rightarrow A=\left(5+5^2+5^3+5^4\right)+...+\left(5^{97}+5^{98}+5^{99}+5^{100}\right)\)
\(\Rightarrow A=5.\left(1+5+25+125\right)+...+5^{97}.\left(1+5+25+125\right)\)
\(\Rightarrow A=5.165+....+5^{97}.165\)
\(\Rightarrow A=165.\left(5+...+5^{97}\right)\)
\(\Rightarrowđpcm\)
\(A=2+2^2+2^3+........+2^{49}+2^{50}\)
\(=2.\left(1+2\right)+2^3+\left(1+2\right)+........2^{59}+\left(1+2\right)\)
\(=2.3+2^3.3+........+2^{59}.3\)
\(=3.\left(2+2^3+.......+2^{59}\right)\) luôn chia hết cho 3
Vay \(A=2+2^2+2^3+........+2^{49}+2^{50}\) chia hết cho 3
đỗ diệu linh làm đúng rồi đó